688 research outputs found
Recommended from our members
The first signs of language: Phonological development in British sign language
A total of 1018 signs in one deaf child’s naturalistic interaction with her deaf mother, between the ages 19-24 months were analysed. This study summarises regular modification processes in the phonology of the child sign’s handshape, location, movement and prosody. Firstly changes to signs were explained by the notion of phonological markedness. Secondly, the child managed her production of first signs through two universal processes: structural change and substitution. Constraints unique to the visual modality also caused sign language specific acquisition patterns, namely: more errors for handshape articulation in locations in peripheral vision, a high frequency of whole sign repetitions and feature group rather than one-to-one phoneme substitutions as in spoken language development
Making tracks: electronic excitation roles in forming swift heavy ion tracks
Swift heavy ions cause material modification along their tracks, changes primarily due to their very dense electronic excitation. The available data for threshold stopping powers indicate two main classes of materials. Group I, with threshold stopping powers above about 10 keV nm(-1), includes some metals, crystalline semiconductors and a few insulators. Group II, with lower thresholds, comprises many insulators, amorphous materials and high T-c oxide superconductors. We show that the systematic differences in behaviour result from different coupling of the dense excited electrons, holes and excitons to atomic (ionic) motions, and the consequent lattice relaxation. The coupling strength of excitons and charge carriers with the lattice is crucial. For group II, the mechanism appears to be the self- trapped exciton model of Itoh and Stoneham ( 1998 Nucl. Instrum. Methods Phys. Res. B 146 362): the local structural changes occur roughly when the exciton concentration exceeds the number of lattice sites. In materials of group I, excitons are not self- trapped and structural change requires excitation of a substantial fraction of bonding electrons, which induces spontaneous lattice expansion within a few hundred femtoseconds, as recently observed by laser- induced time- resolved x- ray diffraction of semiconductors. Our analysis addresses a number of experimental results, such as track morphology, the efficiency of track registration and the ratios of the threshold stopping power of various materials
GEOMETRY AND CHARGE-DISTRIBUTION OF H-CENTERS IN THE FLUORITE STRUCTURE
The analysis of experimental optical and spin-resonance data for the H centre gives a consistent picture of the local geometry and one-electron wavefunctions. One of the two ions in the F2- molecular ion remains very close to the perfect lattice site the other is at a distance close to that found in other F2- centres. This analysis is confirmed by atomistic calculations using the HADES code. The results are used to give a preliminary analysis of the self-trapped exciton data
Optical response of ferromagnetic YTiO_3 studied by spectral ellipsometry
We have studied the temperature dependence of spectroscopic ellipsometry
spectra of an electrically insulating, nearly stoichiometric YTiO_3 single
crystal with ferromagnetic Curie temperature T_C = 30 K. The optical response
exhibits a weak but noticeable anisotropy. Using a classical dispersion
analysis, we identify three low-energy optical bands at 2.0, 2.9, and 3.7 eV.
Although the optical conductivity spectra are only weakly temperature dependent
below 300 K, we are able to distinguish high- and low-temperature regimes with
a distinct crossover point around 100 K. The low-temperature regime in the
optical response coincides with the temperature range in which significant
deviations from Curie-Weiss mean field behavior are observed in the
magnetization. Using an analysis based on a simple superexchange model, the
spectral weight rearrangement can be attributed to intersite d_i^1d_j^1
\longrightarrow d_i^2d_j^0 optical transitions. In particular, Kramers-Kronig
consistent changes in optical spectra around 2.9 eV can be associated with the
high-spin-state (^3T_1) optical transition. This indicates that other
mechanisms, such as weakly dipole-allowed p-d transitions and/or
exciton-polaron excitations, can contribute significantly to the optical band
at 2 eV. The recorded optical spectral weight gain of 2.9 eV optical band is
significantly suppressed and anisotropic, which we associate with complex
spin-orbit-lattice phenomena near ferromagnetic ordering temperature in YTiO_3
Photoluminescence dispersion as a probe of structural inhomogeneity in silica
We report time-resolved photoluminescence spectra of point defects in
amorphous silicon dioxide (silica), in particular the decay kinetics of the
emission signals of extrinsic Oxygen Deficient Centres of the second type from
singlet and directly-excited triplet states are measured and used as a probe of
structural inhomogeneity. Luminescence activity in sapphire
(-AlO) is studied as well and used as a model system to compare
the optical properties of defects in silica with those of defects embedded in a
crystalline matrix. Only for defects in silica, we observe a variation of the
decay lifetimes with emission energy and a time dependence of the first moment
of the emission bands. These features are analyzed within a theoretical model
with explicit hypothesis about the effect introduced by the disorder of
vitreous systems. Separate estimations of the homogenous and inhomogeneous
contributions to the measured emission linewidth are obtained: it is found that
inhomogeneous effects strongly condition both the triplet and singlet
luminescence activities of oxygen deficient centres in silica, although the
degree of inhomogeneity of the triplet emission turns out to be lower than that
of the singlet emission. Inhomogeneous effects appear to be negligible in
sapphire
Structure and vibrational spectra of carbon clusters in SiC
The electronic, structural and vibrational properties of small carbon
interstitial and antisite clusters are investigated by ab initio methods in 3C
and 4H-SiC. The defects possess sizable dissociation energies and may be formed
via condensation of carbon interstitials, e.g. generated in the course of ion
implantation. All considered defect complexes possess localized vibrational
modes (LVM's) well above the SiC bulk phonon spectrum. In particular, the
compact antisite clusters exhibit high-frequency LVM's up to 250meV. The
isotope shifts resulting from a_{13}C enrichment are analyzed. In the light of
these results, the photoluminescence centers D_{II} and P-U are discussed. The
dicarbon antisite is identified as a plausible key ingredient of the
D_{II}-center, whereas the carbon split-interstitial is a likely origin of the
P-T centers. The comparison of the calculated and observed high-frequency modes
suggests that the U-center is also a carbon-antisite based defect.Comment: 15 pages, 6 figures, accepted by Phys. Rev.
Photon Splitting in a Very Strong Magnetic Field
Photon splitting in a very strong magnetic field is analyzed for energy
. The amplitude obtained on the base of operator-diagram technique
is used. It is shown that in a magnetic field much higher than critical one the
splitting amplitude is independent on the field. Our calculation is in a good
agreement with previous results of Adler and in a strong contradiction with
recent paper of Mentzel et al.Comment: 5 pages,Revtex , 4 figure
Lattice Relaxation and Charge-Transfer Optical Transitions Due to Self-Trapped Holes in Non-Stoichiometric LaMnO Crystal
We use the Mott-Littleton approach to evaluate polarisation energies in
LaMnO lattice associated with holes localized on both Mn cation and
O anion. The full (electronic and ionic) lattice relaxation energy for a
hole localized at the O-site is estimated as 2.4 eV which is appreciably
greater than that of 0.8 eV for a hole localized at the Mn-site, indicating on
the strong electron-phonon interaction in the former case. Using a Born-Haber
cycle we examine thermal and optical energies of the hole formation associated
with electron ionization from Mn, O and La ions in
LaMnO lattice. For these calculations we derive a phenomenological value
for the second electron affinity of oxygen in LaMnO lattice by matching the
optical energies of La and O hole formation with maxima of binding
energies in the experimental photoemission spectra. The calculated thermal
energies predict that the electronic hole is marginally more stable in the
Mn state in LaMnO host lattice, but the energy of a hole in the
O state is only higher by a small amount, 0.75 eV, rather suggesting that
both possibilities should be treated seriously. We examine the energies of a
number of fundamental optical transitions, as well as those involving
self-trapped holes of Mn and O in LaMnO lattice. The reasonable
agreement with experiment of our predicted energies, linewidths and oscillator
strengths leads us to plausible assignments of the optical bands observed. We
deduce that the optical band near 5 eV is associated with O(2p) - Mn(3d)
transition of charge-transfer character, whereas the band near 2.3 eV is rather
associated with the presence of Mn and/or O self-trapped holes in
non-stoichiometric LaMnO compound.Comment: 18 pages, 6 figures, it was presented partially at SCES-2001
conference in Ann Arbor, Michiga
- …
