2,214 research outputs found

    Dicke quantum spin glass of atoms and photons

    Get PDF
    Recent studies of strongly interacting atoms and photons in optical cavities have rekindled interest in the Dicke model of atomic qubits coupled to discrete photon cavity modes. We study the multimode Dicke model with variable atom-photon couplings. We argue that a quantum spin glass phase can appear, with a random linear combination of the cavity modes superradiant. We compute atomic and photon spectral response functions across this quantum phase transition, both of which should be accessible in experiment.Comment: 4 pages, 3 figures, v2: described quantum optics set-up in more detail; extended discussion on photon correlation functions and experimental signatures; added reference

    Frustration and glassiness in spin models with cavity-mediated interactions

    Full text link
    We show that the effective spin-spin interaction between three-level atoms confined in a multimode optical cavity is long-ranged and sign-changing, like the RKKY interaction; therefore, ensembles of such atoms subject to frozen-in positional randomness can realize spin systems having disordered and frustrated interactions. We argue that, whenever the atoms couple to sufficiently many cavity modes, the cavity-mediated interactions give rise to a spin glass. In addition, we show that the quantum dynamics of cavity-confined spin systems is that of a Bose-Hubbard model with strongly disordered hopping but no on-site disorder; this model exhibits a random-singlet glass phase, absent in conventional optical-lattice realizations. We briefly discuss experimental signatures of the realizable phases.Comment: 5 pages, 2 figure

    Ferromagnetism in Correlated Electron Systems: Generalization of Nagaoka's Theorem

    Full text link
    Nagaoka's theorem on ferromagnetism in the Hubbard model with one electron less than half filling is generalized to the case where all possible nearest-neighbor Coulomb interactions (the density-density interaction VV, bond-charge interaction XX, exchange interaction FF, and hopping of double occupancies FF') are included. It is shown that for ferromagnetic exchange coupling (F>0F>0) ground states with maximum spin are stable already at finite Hubbard interaction U>UcU>U_c. For non-bipartite lattices this requires a hopping amplitude t0t\leq0. For vanishing FF one obtains UcU_c\to\infty as in Nagaoka's theorem. This shows that the exchange interaction FF is important for stabilizing ferromagnetism at finite UU. Only in the special case X=tX=t the ferromagnetic state is stable even for F=0F=0, provided the lattice allows the hole to move around loops.Comment: 13 pages, uuencoded postscript, includes 1 table and 2 figure

    Spintronic properties of one-dimensional electron gas in graphene armchair ribbons

    Full text link
    We have investigated, using effective mass approach (EMA), magnetic properties of a one-dimensional electron gas in graphene armchair ribbons when the electrons of occupy only the lowest conduction subband. We find that magnetic properties of the one-dimensional electron gas may depend sensitively on the width of the ribbon. For ribbon widths Lx=3Ma0L_x=3Ma_0, a critical point separates ferromagnetic and paramagnetic states while for Lx=(3M+1)a0L_x=(3M+1)a_0 paramagnetic state is stable (MM is an integer and a0a_{0} is the length of the unit cell). These width-dependent properties are a consequence of eigenstates that have a subtle width-dependent mixture of K\mathbf{K} and K\mathbf{K'} states, and can be understood by examining the wavefunction overlap that appears in the expression for the many-body exchange self-energy. Ferromagnetic and paramagnetic states may be used for spintronic purposes.Comment: 5 pages, 6 figure

    Determining ethylene group disorder levels in κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Get PDF
    We present a detailed structural investigation of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br at temperatures TT from 9 to 300 K. Anomalies in the TT dependence of the lattice parameters are associated with a glass-like transition previously reported at TgT_g = 77 K. From structure refinements at 9, 100 and 300 K, the orthorhombic crystalline symmetry, space group {\it Pnma}, is established at all temperatures. Further, we extract the TT dependence of the occupation factor of the eclipsed conformation of the terminal ethylene groups of the BEDT-TTF molecule. At 300 K, we find 67(2) %, with an increase to 97(3) % at 9 K. We conclude that the glass-like transition is not primarily caused by configurational freezing-out of the ethylene groups

    Hole motion in the Ising antiferromagnet: an application of the recursion method

    Full text link
    We study hole motion in the Ising antiferromagnet using the recursion method. Using the retraceable path approximation we find the hole's Green's function as well as its wavefunction for arbitrary values of t/Jzt/J_z. The effect of small transverse interaction also is taken into account. Our results provide some additional insight into the self-consistent Born approximation.Comment: 8 pages, RevTex, no figures. Accepted for publication in Phys.Rev.

    Manned Mars landing missions using electric propulsion

    Get PDF
    Manned Mars landing missions using electric propulsion - evaluation of various mission profile

    Effects of Next-Nearest-Neighbor Hopping on the Hole Motion in an Antiferromagnetic Background

    Full text link
    In this paper we study the effect of next-nearest-neighbor hopping on the dynamics of a single hole in an antiferromagnetic (N\'{e}el) background. In the framework of large dimensions the Green function of a hole can be obtained exactly. The exact density of states of a hole is thus calculated in large dimensions and on a Bethe lattice with large coordination number. We suggest a physically motivated generalization to finite dimensions (e.g., 2 and 3). In d=2d=2 we present also the momentum dependent spectral function. With varying degree, depending on the underlying lattice involved, the discrete spectrum for holes is replaced by a continuum background and a few resonances at the low energy end. The latter are the remanents of the bound states of the tJt-J model. Their behavior is still largely governed by the parameters tt and JJ. The continuum excitations are more sensitive to the energy scales tt and t1t_1.Comment: To appear in Phys. Rev. B, Revtex, 23 pages, 10 figures available on request from [email protected]

    Propagation of a hole on a Neel background

    Full text link
    We analyze the motion of a single hole on a N\'eel background, neglecting spin fluctuations. Brinkman and Rice studied this problem on a cubic lattice, introducing the retraceable-path approximation for the hole Green's function, exact in a one-dimensional lattice. Metzner et al. showed that the approximationalso becomes exact in the infinite-dimensional limit. We introduce a new approach to this problem by resumming the Nagaoka expansion of the propagator in terms of non-retraceable skeleton-paths dressed by retraceable-path insertions. This resummation opens the way to an almost quantitative solution of the problemin all dimensions and, in particular sheds new light on the question of the position of the band-edges. We studied the motion of the hole on a double chain and a square lattice, for which deviations from the retraceable-path approximation are expected to be most pronounced. The density of states is mostly adequately accounted for by the retra\-ce\-able-path approximation. Our band-edge determination points towards an absence of band tails extending to the Nagaoka energy in the spectrums of the double chain and the square lattice. We also evaluated the spectral density and the self-energy, exhibiting k-dependence due to finite dimensionality. We find good agreement with recent numerical results obtained by Sorella et al. with the Lanczos spectra decoding method. The method we employ enables us to identify the hole paths which are responsible for the various features present in the density of states and the spectral density.Comment: 26 pages,Revte

    Rigorous results on superconducting ground states for attractive extended Hubbard models

    Get PDF
    We show that the exact ground state for a class of extended Hubbard models including bond-charge, exchange, and pair-hopping terms, is the Yang "eta-paired" state for any non-vanishing value of the pair-hopping amplitude, at least when the on-site Coulomb interaction is attractive enough and the remaining physical parameters satisfy a single constraint. The ground state is thus rigorously superconducting. Our result holds on a bipartite lattice in any dimension, at any band filling, and for arbitrary electron hopping.Comment: 12 page
    corecore