73 research outputs found

    Anisotropically high entanglement of biphotons generated in spontaneous parametric down conversion

    Get PDF
    We show that the wave packet of a biphoton generated via spontaneous parametric down conversion is strongly anisotropic. Its anisotropic features manifest themselves very clearly in comparison of measurements performed in two different schemes: when the detector scanning plane is perpendicular or parallel to the plane containing the crystal optical axis and the laser axis. The first of these two schemes is traditional whereas the second one gives rise to such unexpected new results as anomalously strong narrowing of the biphoton wave packet measured in the coincidence scheme and very high degree of entanglement. The results are predicted theoretically and confirmed experimentally

    Angular Schmidt Modes in Spontaneous Parametric Down-Conversion

    Full text link
    We report a proof-of-principle experiment demonstrating that appropriately chosen set of Hermite-Gaussian modes constitutes a Schmidt decomposition for transverse momentum states of biphotons generated in the process of spontaneous parametric down conversion. We experimentally realize projective measurements in Schmidt basis and observe correlations between appropriate pairs of modes. We perform tomographical state reconstruction in the Schmidt basis, by direct measurement of single-photon density matrix eigenvalues.Comment: 5 pages, 4 figure

    Projective filtering of a single spatial radiation eigenmode

    Full text link
    Lossless filtering of a single coherent (Schmidt) mode from spatially multimode radiation is a problem crucial for optics in general and for quantum optics in particular. It becomes especially important in the case of nonclassical light that is fragile to optical losses. An example is bright squeezed vacuum generated via high-gain parametric down conversion or four-wave mixing. Its highly multiphoton and multimode structure offers a huge increase in the information capacity provided that each mode can be addressed separately. However, the nonclassical signature of bright squeezed vacuum, photon-number correlations, are highly susceptible to losses. Here we demonstrate lossless filtering of a single spatial Schmidt mode by projecting the spatial spectrum of bright squeezed vacuum on the eigenmode of a single-mode fiber. Moreover, we show that the first Schmidt mode can be captured by simply maximizing the fiber-coupled intensity. Importantly, the projection operation does not affect the targeted mode and leaves it usable for further applications.Comment: 10 pages, 9 figure

    Polarization ququarts

    Full text link
    We discuss the concept of polarization states of four-dimensional quantum systems based on frequency non-degenerate biphoton field. Several quantum tomography protocols were developed and implemented for measurement of an arbitrary state of ququart. A simple method that does not rely on interferometric technique is used to generate and measure the sequence of states that can be used for quantum communication purposes.Comment: 13 pages, 10 figure

    On Preparing Entangled Pairs of Polarization Qubits in the Frequency Non-Degenerate Regime

    Full text link
    The problems associated with practical implementation of the scheme proposed for preparation of arbitrary states of polarization ququarts based on biphotons are discussed. The influence of frequency dispersion effects are considered, and the necessity of group velocities dispersion compensation in the frequency non-degenerate case even for continuous pumping is demonstrated. A method for this compensation is proposed and implemented experimentally. Physical restrictions on the quality of prepared two-photon states are revealed.Comment: 9 pages, 6 figure
    corecore