79 research outputs found

    Pharmacological levels of withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells

    Get PDF
    Withaferin A (WA) isolated from Withania somnifera (Ashwagandha) has recently become an attractive phytochemical under investigation in various preclinical studies for treatment of different cancer types. In the present study, a comparative pathway-based transcriptome analysis was applied in epithelial-like MCF-7 and triple negative mesenchymal MDA-MB-231 breast cancer cells exposed to different concentrations of WA which can be detected systemically in in vivo experiments. Whereas WA treatment demonstrated attenuation of multiple cancer hallmarks, the withanolide analogue Withanone (WN) did not exert any of the described effects at comparable concentrations. Pathway enrichment analysis revealed that WA targets specific cancer processes related to cell death, cell cycle and proliferation, which could be functionally validated by flow cytometry and real-time cell proliferation assays. WA also strongly decreased MDA-MB-231 invasion as determined by single-cell collagen invasion assay. This was further supported by decreased gene expression of extracellular matrix-degrading proteases (uPA, PLAT, ADAM8), cell adhesion molecules (integrins, laminins), pro-inflammatory mediators of the metastasis-promoting tumor microenvironment (TNFSF12, IL6, ANGPTL2, CSF1R) and concomitant increased expression of the validated breast cancer metastasis suppressor gene (BRMS1). In line with the transcriptional changes, nanomolar concentrations of WA significantly decreased protein levels and corresponding activity of uPA in MDA-MB-231 cell supernatant, further supporting its anti-metastatic properties. Finally, hierarchical clustering analysis of 84 chromatin writer-reader-eraser enzymes revealed that WA treatment of invasive mesenchymal MDA-MB-231 cells reprogrammed their transcription levels more similarly towards the pattern observed in non-invasive MCF-7 cells. In conclusion, taking into account that sub-cytotoxic concentrations of WA target multiple metastatic effectors in therapy-resistant triple negative breast cancer, WA-based therapeutic strategies targeting the uPA pathway hold promise for further (pre)clinical development to defeat aggressive metastatic breast cancer

    Integration of cardiovascular risk assessment with COVID-19 using artificial intelligence

    Get PDF
    Artificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring. This perspective narrative shows the powerful methods of AI for tracking cardiovascular risks. We conclude that AI could potentially become an integral part of the COVID-19 disease management system. Countries, large and small, should join hands with the WHO in building biobanks for scientists around the world to build AI-based platforms for tracking the cardiovascular risk assessment during COVID-19 times and long-term follow-up of the survivors

    Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study

    Get PDF
    A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients

    Economic life in a Malabar village: a study in Indian rural economic organization

    No full text

    A new super-resolution spectral estimation technique using staggered PRFs

    No full text
    corecore