2,358 research outputs found
Electrical safety requirements: Implications for the module designer
Commercial photovoltaic array installations, which include residential and intermediate applications, are subject to building and electrical codes and to product safety standards. The National Electrical Code (NEC) Article 690, titled Solar Photovoltaic Systems, contains provisions defining acceptable levels of system safety and emphasizes the system design and its installation. The Underwriters Laboratories, Inc. (UL), document titled: Proposed First Edition of the Standard for Flat Plate Photovoltaic Modules and Panels, UL-1703, identifies module and panel construction requirements that ensure product safety. Together these documents describe requirements intended to minimize hazards such as shock and fire. Although initial focus of these requirements is on single crystal silicon modules, they are generic in nature, and are equally applicable to high voltage ( 30 Vdc), multikilowatt, thin film systems. A major safety concern is insulation breakdown within the module or array wiring system, or discontinuities within the electrical conductors. These failures can result in ground faults, in circuit arcs, or exposure to hazardous electrical parts. Safeguards are discussed
Robustness of force and stress inference in an epithelial tissue
During morphogenesis, the shape of a tissue emerges from collective cellular
behaviors, which are in part regulated by mechanical and biochemical
interactions between cells. Quantification of force and stress is therefore
necessary to analyze the mechanisms controlling tissue morphogenesis. Recently,
a mechanical measurement method based on force inference from cell shapes and
connectivity has been developed. It is non-invasive, and can provide space-time
maps of force and stress within an epithelial tissue, up to prefactors. We
previously performed a comparative study of three force-inference methods,
which differ in their approach of treating indefiniteness in an inverse problem
between cell shapes and forces. In the present study, to further validate and
compare the three force inference methods, we tested their robustness by
measuring temporal fluctuation of estimated forces. Quantitative data of
cell-level dynamics in a developing tissue suggests that variation of forces
and stress will remain small within a short period of time (minutes).
Here, we showed that cell-junction tensions and global stress inferred by the
Bayesian force inference method varied less with time than those inferred by
the method that estimates only tension. In contrast, the amplitude of temporal
fluctuations of estimated cell pressures differs less between different
methods. Altogether, the present study strengthens the validity and robustness
of the Bayesian force-inference method.Comment: 4 pages, 4 figure
Non-Gaussian bubbles in the sky
We point out a possible generation mechanism of non-Gaussian bubbles in the
sky due to bubble nucleation in the early universe. We consider a curvaton
scenario for inflation and assume that the curvaton field phi, whose energy
density is subdominant during inflation but which is responsible for the
curvature perturbation of the universe, is coupled to another field sigma which
undergoes false vacuum decay through quantum tunneling. For this model, we
compute the skewness of the curvaton fluctuations due to its interaction with
sigma during tunneling, that is, on the background of an instanton solution
that describes false vacuum decay. We find that the resulting skewness of the
curvaton can become large in the spacetime region inside the bubble. We then
compute the corresponding skewness in the statistical distribution of the
cosmic microwave background (CMB) temperature fluctuations. We find a
non-vanishing skewness in a bubble-shaped region in the sky. It can be large
enough to be detected in the near future, and if detected it will bring us
invaluable information about the physics in the early universe.Comment: 6 pages, 6 figure
Multi-field open inflation model and multi-field dynamics in tunneling
We consider a multi-field open inflation model, in which one of the fields
dominates quantum tunneling from a false vacuum while the other field governs
slow-roll inflation within the bubble nucleated from false vacuum decay. We
call the former the tunneling field and the latter the inflaton field. In the
limit of a negligible interaction between the two fields, the false vacuum
decay is described by a Coleman-De Luccia instanton. Here we take into account
the coupling between the two fields and construct explicitly a multi-field
instanton for a simple quartic potential model. We also solve the evolution of
the scalar fields within the bubble. We find our model realizes open inflation
successfully. This is the first concrete, viable model of open inflation
realized with a simple potential. We then study the effect of the multi-field
dynamics on the false vacuum decay, specifically on the tunneling rate. We find
the tunneling rate increases in general in comparison with the single field
case, though the increase is small unless the inflaton affects the instanton
solution substantially.Comment: 13 pages, 4 figure
Electron correlation in FeSe superconductor studied by bulk-sensitive photoemission spectroscopy
We have investigated the electronic structures of recently discovered
superconductor FeSe by soft-x-ray and hard-x-ray photoemission spectroscopy
with high bulk sensitivity. The large Fe 3d spectral weight is located in the
vicinity of the Fermi level (EF), which is demonstrated to be a coherent
quasi-particle peak. Compared with the results of the band structure
calculation with local-density approximation, Fe 3d band narrowing and the
energy shift of the band toward EF are found, suggesting an importance of the
electron correlation effect in FeSe. The self energy correction provides the
larger mass enhancement value (Z^-1=3.6) than in Fe-As superconductors and
enables us to separate a incoherent part from the spectrum. These features are
quite consistent with the results of recent dynamical mean-field calculations,
in which the incoherent part is attributed to the lower Hubbard band.Comment: 8 pages, 5 figures, 1 talbl
The HypHI project: Hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and FAIR
The HypHI collaboration aims to perform a precise hypernuclear spectroscopy
with stable heavy ion beams and rare isotope beams at GSI and fAIR in order to
study hypernuclei at extreme isospin, especially neutron rich hypernuclei to
look insight hyperon-nucleon interactions in the neutron rich medium, and
hypernuclear magnetic moments to investigate baryon properties in the nuclei.
We are currently preparing for the first experiment with Li and C
beams at 2 AGeV to demonstrate the feasibility of a precise hypernuclear
spectroscopy by identifying H, H and
He. The first physics experiment on these hypernuclei is
planned for 2009. In the present document, an overview of the HypHI project and
the details of this first experiment will be discussed.Comment: 5 pages, 2 figures, French-Japanese symposium 2008, Paris (France
Observation of Spin-Dependent Charge Symmetry Breaking in Interaction: Gamma-Ray Spectroscopy of He
The energy spacing between the ground-state spin doublet of He(1,0) was determined to be keV, by measuring
rays for the transition with a high efficiency germanium
detector array in coincidence with the He He
reaction at J-PARC. In comparison to the corresponding energy spacing in the
mirror hypernucleus H, the present result clearly indicates the
existence of charge symmetry breaking (CSB) in interaction. It is
also found that the CSB effect is large in the ground state but is by one
order of magnitude smaller in the excited state, demonstrating that the
CSB interaction has spin dependence
Oocyte maturation and quality: role of cyclic nucleotides
Advance Publication first posted online on 15 July 2016 - Accepted manuscriptThe cyclic nucleotides, cAMP and cGMP, are the key molecules controlling mammalian oocyte meiosis. Their roles in oocyte biology have been at the forefront of oocyte research for decades and many of the long standing controversies in relation to the regulation of oocyte meiotic maturation are now resolved. It is now clear that the follicle prevents meiotic resumption through the actions of natriuretic peptides and cGMP inhibiting the hydrolysis of intra-oocyte cAMP and that the preovulatory gonadotrophin surge reverses these processes. The gonadotrophin surge also leads to a transient spike in cAMP in the somatic compartment of the follicle; research over the past 2 decades has conclusively demonstrated that this surge in cAMP is important for the subsequent developmental capacity of the oocyte. This is important, as oocyte in vitro maturation (IVM) systems practiced clinically do not recapitulate this cAMP surge in vitro, possibly accounting for the lower efficiency of IVM compared to clinical IVF. This review focuses in particular on this latter aspect - the role of cAMP/cGMP in the regulation of oocyte quality. We conclude that clinical practice of IVM should reflect this new understanding of the role of cyclic nucleotides, thereby creating a new generation of ART and fertility treatment options.Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, De Vos M, Sugimura S, Smitz J, Richard FJ and Thompson J
Compensation of the Crossing Angle with Crab Cavities at KEKB
Crab cavities have been installed in the KEKB B--Factory rings to compensate
the crossing angle at the collision point and thus increase luminosity. The
beam operation with crab crossing has been done since February 2007. This is
the first experience with such cavities in colliders or storage rings. The crab
cavities have been working without serious issues. While higher specific
luminosity than the geometrical gain has been achieved, further study is
necessary and under way to reach the prediction of simulation.Comment: Submitted to Particle Accelerator Conference 2007, MOZAKI01,
Albuquerqu
Flat-band ferromagnetism in quantum dot superlattices
Possibility of flat-band ferromagnetism in quantum dot arrays is
theoretically discussed. By using a quantum dot as a building block, quantum
dot superlattices are possible. We consider dot arrays on Lieb and kagome
lattices known to exhibit flat band ferromagnetism. By performing an exact
diagonalization of the Hubbard Hamiltonian, we calculate the energy difference
between the ferromagnetic ground state and the paramagnetic excited state, and
discuss the stability of the ferromagnetism against the second nearest neighbor
transfer. We calculate the dot-size dependence of the energy difference in a
dot model and estimate the transition temperature of the
ferromagnetic-paramagnetic transition which is found to be accessible within
the present fabrication technology. We point out advantages of semiconductor
ferromagnets and suggest other interesting possibilities of electronic
properties in quantum dot superlattices.Comment: 15 pages, 7 figures (low resolution). High-resolution figures are
available at
http://www.brl.ntt.co.jp/people/tamura/Research/PublicationPapers.htm
- …
