3,033 research outputs found

    An approach toward the successful supernova explosion by physics of unstable nuclei

    Full text link
    We study the explosion mechanism of collapse-driven supernovae by numerical simulations with a new nuclear EOS based on unstable nuclei. We report new results of simulations of general relativistic hydrodynamics together with the Boltzmann neutrino-transport in spherical symmetry. We adopt the new data set of relativistic EOS and the conventional set of EOS (Lattimer-Swesty EOS) to examine the influence on dynamics of core-collapse, bounce and shock propagation. We follow the behavior of stalled shock more than 500 ms after the bounce and compare the evolutions of supernova core.Comment: 4 pages, 2 figures, contribution to Nuclei in the Cosmos 8, to appear in Nucl. Phys.

    R-Process Nucleosynthesis In Neutrino-Driven Winds From A Typical Neutron Star With M = 1.4 Msun

    Full text link
    We study the effects of the outer boundary conditions in neutrino-driven winds on the r-process nucleosynthesis. We perform numerical simulations of hydrodynamics of neutrino-driven winds and nuclear reaction network calculations of the r-process. As an outer boundary condition of hydrodynamic calculations, we set a pressure upon the outermost layer of the wind, which is approaching toward the shock wall. Varying the boundary pressure, we obtain various asymptotic thermal temperature of expanding material in the neutrino-driven winds for resulting nucleosynthesis. We find that the asymptotic temperature slightly lower than those used in the previous studies of the neutrino-driven winds can lead to a successful r-process abundance pattern, which is in a reasonable agreement with the solar system r-process abundance pattern even for the typical proto-neutron star mass Mns ~ 1.4 Msun. A slightly lower asymptotic temperature reduces the charged particle reaction rates and the resulting amount of seed elements and lead to a high neutron-to-seed ratio for successful r-process. This is a new idea which is different from the previous models of neutrino-driven winds from very massive (Mns ~ 2.0 Msun) and compact (Rns ~ 10 km) neutron star to get a short expansion time and a high entropy for a successful r-process abundance pattern. Although such a large mass is sometimes criticized from observational facts on a neutron star mass, we dissolve this criticism by reconsidering the boundary condition of the wind. We also explore the relation between the boundary condition and neutron star mass, which is related to the progenitor mass, for successful r-process.Comment: 14 pages, 2 figure

    Dynamics and neutrino signal of black hole formation in non-rotating failed supernovae. II. progenitor dependence

    Full text link
    We study the progenitor dependence of the black hole formation and its associated neutrino signals from the gravitational collapse of non-rotating massive stars, following the preceding study on the single progenitor model in Sumiyoshi et al. (2007). We aim to clarify whether the dynamical evolution toward the black hole formation occurs in the same manner for different progenitors and to examine whether the characteristic of neutrino bursts is general having the short duration and the rapidly increasing average energies. We perform the numerical simulations by general relativistic neutrino-radiation hydrodynamics to follow the dynamical evolution from the collapse of pre-supernova models of 40Msun and 50Msun toward the black hole formation via contracting proto-neutron stars. For the three progenitor models studied in this paper, we found that the black hole formation occurs in ~0.4-1.5 s after core bounce through the increase of proto-neutron star mass together with the short and energetic neutrino burst. We found that density profile of progenitor is important to determine the accretion rate onto the proto-neutron star and, therefore, the duration of neutrino burst. We compare the neutrino bursts of black hole forming events from different progenitors and discuss whether we can probe clearly the progenitor and/or the dense matter.Comment: 30 pages, 11 figures, accepted for publication in Ap

    Dynamics and neutrino signal of black hole formation in non-rotating failed supernovae. I. EOS dependence

    Full text link
    We study the black hole formation and the neutrino signal from the gravitational collapse of a non-rotating massive star of 40 Msun. Adopting two different sets of realistic equation of state (EOS) of dense matter, we perform the numerical simulations of general relativistic neutrino-radiation hydrodynamics under the spherical symmetry. We make comparisons of the core bounce, the shock propagation, the evolution of nascent proto-neutron star and the resulting re-collapse to black hole to reveal the influence of EOS. We also explore the influence of EOS on the neutrino emission during the evolution toward the black hole formation. We find that the speed of contraction of the nascent proto-neutron star, whose mass increases fast due to the intense accretion, is different depending on the EOS and the resulting profiles of density and temperature differ significantly. The black hole formation occurs at 0.6-1.3 sec after bounce when the proto-neutron star exceeds its maximum mass, which is crucially determined by the EOS. We find that the average energies of neutrinos increase after bounce because of rapid temperature increase, but at different speeds depending on the EOS. The duration of neutrino emission up to the black hole formation is found different according to the different timing of re-collapse. These characteristics of neutrino signatures are distinguishable from those for ordinary proto-neutron stars in successful core-collapse supernovae. We discuss that a future detection of neutrinos from black-hole-forming collapse will contribute to reveal the black hole formation and to constrain the EOS at high density and temperature.Comment: 32 pages, 33 figures, accepted for publication in Ap

    Numerical Study on Stellar Core Collapse and Neutrino Emission: Probe into the Spherically Symmetric Black Hole Progenitors with 3 - 30Msun Iron Cores

    Full text link
    The existence of various anomalous stars, such as the first stars in the universe or stars produced by stellar mergers, has been recently proposed. Some of these stars will result in black hole formation. In this study, we investigate iron core collapse and black hole formation systematically for the iron-core mass range of 3 - 30Msun, which has not been studied well so far. Models used here are mostly isentropic iron cores that may be produced in merged stars in the present universe but we also employ a model that is meant for a Population III star and is obtained by evolutionary calculation. We solve numerically the general relativistic hydrodynamics and neutrino transfer equations simultaneously, treating neutrino reactions in detail under spherical symmetry. As a result, we find that massive iron cores with ~10Msun unexpectedly produce a bounce owing to the thermal pressure of nucleons before black hole formation. The features of neutrino signals emitted from such massive iron cores differ in time evolution and spectrum from those of ordinary supernovae. Firstly, the neutronization burst is less remarkable or disappears completely for more massive models because the density is lower at the bounce. Secondly, the spectra of neutrinos, except the electron type, are softer owing to the electron-positron pair creation before the bounce. We also study the effects of the initial density profile, finding that the larger the initial density gradient is, the more steeply the neutronization burst declines. Further more, we suggest a way to probe into the black hole progenitors from the neutrino emission and estimate the event number for the currently operating neutrino detectors.Comment: 33 pages, 13 figures, accepted by Ap

    Stability of Tsallis antropy and instabilities of Renyi and normalized Tsallis entropies: A basis for q-exponential distributions

    Full text link
    The q-exponential distributions, which are generalizations of the Zipf-Mandelbrot power-law distribution, are frequently encountered in complex systems at their stationary states. From the viewpoint of the principle of maximum entropy, they can apparently be derived from three different generalized entropies: the Renyi entropy, the Tsallis entropy, and the normalized Tsallis entropy. Accordingly, mere fittings of observed data by the q-exponential distributions do not lead to identification of the correct physical entropy. Here, stabilities of these entropies, i.e., their behaviors under arbitrary small deformation of a distribution, are examined. It is shown that, among the three, the Tsallis entropy is stable and can provide an entropic basis for the q-exponential distributions, whereas the others are unstable and cannot represent any experimentally observable quantities.Comment: 20 pages, no figures, the disappeared "primes" on the distributions are added. Also, Eq. (65) is correcte

    Macroscopic proof of the Jarzynski-Wojcik fluctuation theorem for heat exchange

    Full text link
    In a recent work, Jarzynski and Wojcik (2004 Phys. Rev. Lett. 92, 230602) have shown by using the properties of Hamiltonian dynamics and a statistical mechanical consideration that, through contact, heat exchange between two systems initially prepared at different temperatures obeys a fluctuation theorem. Here, another proof is presented, in which only macroscopic thermodynamic quantities are employed. The detailed balance condition is found to play an essential role. As a result, the theorem is found to hold under very general conditions.Comment: 9 pages, 0 figure

    Gravitational Collapse and Neutrino Emission of Population III Massive Stars

    Full text link
    Pop III stars are the first stars in the universe. They do not contain metals and their formation and evolution may be different from that of stars of later generations. In fact, according to the theory of star formation, Pop III stars might have very massive components (10010000M\sim 100 - 10000M_\odot). In this paper, we compute the spherically symmetric gravitational collapse of these Pop III massive stars. We solve the general relativistic hydrodynamics and neutrino transfer equations simultaneously, treating neutrino reactions in detail. Unlike supermassive stars (105M\gtrsim 10^5 M_\odot), the stars of concern in this paper become opaque to neutrinos. The collapse is simulated until after an apparent horizon is formed. We confirm that the neutrino transfer plays a crucial role in the dynamics of gravitational collapse, and find also that the β\beta-equilibration leads to a somewhat unfamiliar evolution of electron fraction. Contrary to the naive expectation, the neutrino spectrum does not become harder for more massive stars. This is mainly because the neutrino cooling is more efficient and the outer core is more massive as the stellar mass increases. Here the outer core is the outer part of the iron core falling supersonically. We also evaluate the flux of relic neutrino from Pop III massive stars. As expected, the detection of these neutrinos is difficult for the currently operating detectors. However, if ever observed, the spectrum will enable us to obtain the information on the formation history of Pop III stars. We investigate 18 models covering the mass range of 300104M300 - 10^4 M_\odot, making this study the most detailed numerical exploration of spherical gravitational collapse of Pop III massive stars. This will also serve as an important foundation for multi-dimensional investigations.Comment: 32 pages, 11 figs, submitted to Ap
    corecore