218 research outputs found
Excitation and decay of projectile-like fragments formed in dissipative peripheral collisions at intermediate energies
Projectile-like fragments (PLF:15<=Z<=46) formed in peripheral and
mid-peripheral collisions of 114Cd projectiles with 92Mo nuclei at E/A=50 MeV
have been detected at very forward angles, 2.1 deg.<=theta_lab<=4.2 deg.
Calorimetric analysis of the charged particles observed in coincidence with the
PLF reveals that the excitation of the primary PLF is strongly related to its
velocity damping. Furthermore, for a given V_PLF*, its excitation is not
related to its size, Z_PLF*. For the largest velocity damping, the excitation
energy attained is large, approximately commensurate with a system at the
limiting temperatureComment: 5 pages, 6 figure
Tracing a phase transition with fluctuations of the largest fragment size: Statistical multifragmentation models and the ALADIN S254 data
A phase transition signature associated with cumulants of the largest
fragment size distribution has been identified in statistical
multifragmentation models and examined in analysis of the ALADIN S254 data on
fragmentation of neutron-poor and neutron-rich projectiles. Characteristics of
the transition point indicated by this signature are weakly dependent on the
A/Z ratio of the fragmenting spectator source. In particular, chemical
freeze-out temperatures are estimated within the range 5.9 to 6.5 MeV. The
experimental results are well reproduced by the SMM model.Comment: 7 pages, 3 figures, Proceedings of the International Workshop on
Multifragmentation and Related Topics (IWM2009), Catania, Italy, November
2009
Fragment Production in Non-central Collisions of Intermediate Energy Heavy Ions
The defining characteristics of fragment emission resulting from the
non-central collision of 114Cd ions with 92Mo target nuclei at E/A = 50 MeV are
presented. Charge correlations and average relative velocities for mid-velocity
fragment emission exhibit significant differences when compared to standard
statistical decay. These differences associated with similar velocity
dissipation are indicative of the influence of the entrance channel dynamics on
the fragment production process
Patch-based probabilistic identification of plant roots using convolutional neural networks
Recently, computer vision and artificial intelligence are being used as enabling technologies for plant phenotyping studies, since they allow the analysis of large amounts of data gathered by the sensors. Plant phenotyping studies can be devoted to the evaluation of complex plant traits either on the aerial part of the plant as well as on the underground part, to extract meaningful information about the growth, development, tolerance, or resistance of the plant itself. All plant traits should be evaluated automatically and quantitatively measured in a non-destructive way. This paper describes a novel approach for identifying plant roots from images of the root system architecture using a convolutional neural network (CNN) that operates on small image patches calculating the probability that the center point of the patch is a root pixel. The underlying idea is that the CNN model should embed as much information as possible about the variability of the patches that can show chaotic and heterogeneous backgrounds. Results on a real dataset demonstrate the feasibility of the proposed approach, as it overcomes the current state of the art
Optimizing tomato plant phenotyping detection: Boosting YOLOv8 architecture to tackle data complexity
Effective identification of tomato plant traits is crucial for timely monitoring and evaluating their growth and harvest. However, conducting stress experiments on multiple tomato genotypes introduces challenges due to the nature of the data. One of these challenges arises from an imbalanced sample distribution, potentially leading to misclassification between classes and disruptions in model recognition. This paper addresses the effect of these challenges by considering the imbalanced classes of flowers, fruits, and nodes and proposing an improved detection approach through data balancing. A novel data-balancing approach is introduced in this study to overcome the issue of imbalanced data. The proposed solution involves the implementation of a YOLOv8 deep learning model, which effectively detects flowers, fruits, and nodes in tomato plants. This model significantly enhances the ability of the algorithm to detect objects of varying sizes within complex environments. To further bolster the recognition capability of the targeted classes, the proposed model integrates a Squeeze-and-Excitation (SE) block attention module into its head architecture. This module strengthens the model recognition ability by giving increased attention to the studied classes, thereby enhancing overall detection performance. The results demonstrate that the data balancing approach successfully improves the model performance in response to the data challenges. When applying the technique of pre-training the optimal weights obtained from balanced data on imbalanced data, the SE-block module showed significant improvements in outcomes
The effects of calcite silicon-mediated particle film application on leaf temperature and grape composition of Merlot (Vitis vinifera L.) vines under different irrigation conditions
This study examined whether the application of calcite-silicon mediated particle film (CaPF) at veraison can mitigate a drought-induced increase in leaf temperature on grapevine, thus contributing to improved leaf functionality, yield and grape composition traits. A total of 48 five-year-old Merlot (Vitis vinifera L.) vines grafted onto SO4 were grown (in 20 L PVC pots) under Mediterranean conditions (Southern Italy). The vines were pruned to two spurs with two winter buds irrigated daily to 100 % field capacity, and fertilised weekly. At veraison and using a 2×2 factorial experimental design, the two main factors, thermoregulation and water, were imposed at two levels: spraying with a thermoregulation compound (CaPF) and no spraying (NS); irrigation (WW) and drought stress (D)). A group of 24 vines was subjected to a 15-day drought period by receiving, every day, 25 % (D) of the daily water consumption of WW vines. The other 24 vines continued to be fully irrigated on a daily basis (WW). Twelve vines per group were sprayed (WW+CaPF, D+CaPF) with calcite-silicon mediate (3 % V/V) at the beginning of drought imposition, the remaining 24 vines were not sprayed (WW-NS, D-NS). Soil water moisture and stem water potential values were monitored from 11.30 to 13:30 nearly every week, and other vegetative and reproductive parameters were also measured. During the experiment, air temperature peaked at ≈35 °C at midday, VPD at about 3.7 kPa and PAR reached ≈2000 µmol m-2 s–1. Results show that in CaPF sprayed vines, leaf-air temperature differences were lower than in unsprayed vines in both irrigated and drought stressed groups. WW+CaPF vines retained significantly more leaf area and showed the highest value of accumulated vine transpiration. Calcite-silicon mediated particle film could enhance the resilience of grapevine to adverse environmental conditions and may contribute to preserve terroir elements in highly reputed wine grape growing areas. The study showed that foliar application of calcite silicon-mediated processed particles films can be used in arid regions to mitigate leaf temperatures in grapevines
Mass measurement and isoscaling in Sn+Sn and Sn+Sn reactions at 600 AMeV
Isotopic effects in projectile spectator fragmentation at 600 AMeV have been investigated using data collected in recent experiments with SIS beams at the GSI laboratory and with the ALADiN forward-spectrometer. For this purpose, primary beams of 124Sn, as well as secondary beams of 124La and 107Sn produced at the FRS fragment separator have been used. Isoscaling in 124,107Sn+Sn reactions is investigated and results are compared with data taken with the INDRA multidetector for 12C+112,124Sn reactions
Off-label use in germany - a current appraisal of gynaecologic university departments
<p>Abstract</p> <p>Objective</p> <p>The off-label use, referring to the applicability of pharmaceutical drugs beyond the submitted and from the Federal Institute for Drugs and Medical Devices (BfArM, Bundesamt für Arzneimittel und Medizinprodukte) certified and approved administration, is the subject of controversial discussions. the application can be considered in case of severe illness - if no therapeutic alternatives are available - or it exists as a founded perspective for achieving therapeutic success.</p> <p>Methods</p> <p>A latitudinal study for evaluating the application of off-label use supplements was performed at 43 German university and academic teaching hospitals. Five doctors at each hospital applied off-label pharmaceutical drugs and were called upon to share their personal experience to the application of those medications.</p> <p>Results</p> <p>75 (35%) questionnaires were returned out of 22 (51%) medical centres with 215 contacted physicians. Off-label use was common for 65 (91%) of the physicians. Only 9% of them obviate the application of off-label drugs. About a half of the medication is related to application in obstetrics (54%) and in most cases on an every day basis. Uterotonics were the most commonly used off-label medications (34%). The main part of information about off-label use is obtained from personal information of colleagues (66%) and personal experience (58%). 34% of physicians think that off label use is risky. Interestingly, the view about off label use of medication varies considerably among physicians from various hospitals.</p> <p>Conclusions</p> <p>The application of off-label pharmaceutical drugs in Germany seems to be a well established practice. More than 90% of participators of our trial use at least one medication outside the administration. This includes particularly prostaglandins, anti-hyper-tonic therapeutics and chemotherapeutics.</p
Solvent-selective routing for centrifugally automated solid-phase purification of RNA
The final publication is available at Springer via https://doi.org/10.1007/s10404-014-1477-9.We present a disc-based module for rotationally controlled solid-phase purification of RNA from cell lysate. To this end, multi-stage routing of a sequence of aqueous and organic liquids into designated waste and elution reservoirs is implemented by a network of strategically placed, solvent-selective composite valves. Using a bead-based stationary phase at the entrance of the router, we show that total RNA is purified with high integrity from cultured MCF7 and T47D cell lines, human leucocytes and Haemophilus influenzae cell lysates. Furthermore, we demonstrate the broad applicability of the device through the in vitro amplification of RNA purified on-disc using RT-PCR and NASBA. Our novel router will be at the pivot of a forthcoming, fully integrated and automated sample preparation system for RNA-based analysis.Peer reviewe
Local sleep-like events during wakefulness and their relationship to decrease in alertness in 5 astronauts on the International Space Station
peer reviewe
- …
