1,871 research outputs found
Definition of smolder experiments for Spacelab
The feasibility of conducting experiments in space on smoldering combustion was studied to conceptually design specific smoldering experiments to be conducted in the Shuttle/Spacelab System. Design information for identified experiment critical components is provided. The analytical and experimental basis for conducting research on smoldering phenomena in space was established. Physical descriptions of the various competing processes pertaining to smoldering combustion were identified. The need for space research was defined based on limitations of existing knowledge and limitations of ground-based reduced-gravity experimental facilities
Hopping Transport in the Presence of Site Energy Disorder: Temperature and Concentration Scaling of Conductivity Spectra
Recent measurements on ion conducting glasses have revealed that conductivity
spectra for various temperatures and ionic concentrations can be superimposed
onto a common master curve by an appropriate rescaling of the conductivity and
frequency. In order to understand the origin of the observed scaling behavior,
we investigate by Monte Carlo simulations the diffusion of particles in a
lattice with site energy disorder for a wide range of both temperatures and
concentrations. While the model can account for the changes in ionic activation
energies upon changing the concentration, it in general yields conductivity
spectra that exhibit no scaling behavior. However, for typical concentrations
and sufficiently low temperatures, a fairly good data collapse is obtained
analogous to that found in experiment.Comment: 6 pages, 4 figure
Frequency-dependent (ac) Conduction in Disordered Composites: a Percolative Study
In a recent paper [Phys. Rev. B{\bf57}, 3375 (1998)], we examined in detail
the nonlinear (electrical) dc response of a random resistor cum tunneling bond
network (, introduced by us elsewhere to explain nonlinear response of
metal-insulator type mixtures). In this work which is a sequel to that paper,
we consider the ac response of the -based correlated () model.
Numerical solutions of the Kirchoff's laws for the model give a power-law
exponent (= 0.7 near ) of the modulus of the complex ac conductance at
moderately low frequencies, in conformity with experiments on various types of
disordered systems. But, at very low frequencies, it gives a simple quadratic
or linear dependence on the frequency depending upon whether the system is
percolating or not. We do also discuss the effective medium approximation
() of our and the traditional random network model, and discuss
their comparative successes and shortcomings.Comment: Revised and reduced version with 17 LaTeX pages plus 8 JPEG figure
Ac hopping conduction at extreme disorder takes place on the percolating cluster
Simulations of the random barrier model show that ac currents at extreme
disorder are carried almost entirely by the percolating cluster slightly above
threshold; thus contradicting traditional theories contributions from isolated
low-activation-energy clusters are negligible. The effective medium
approximation in conjunction with the Alexander-Orbach conjecture leads to an
excellent analytical fit to the universal ac conductivity with no nontrivial
fitting parameters
Differential electrophysiological response during rest, self-referential, and non-self-referential tasks in human posteromedial cortex
The electrophysiological basis for higher brain activity during rest and internally directed cognition within the human default mode network
(DMN) remains largely unknown. Here we use intracranial recordings in
the human posteromedial cortex (PMC), a core node within the DMN,
during conditions of cued rest, autobiographical judgments, and
arithmetic processing. We found a heterogeneous profile of PMC
responses in functional, spatial, and temporal domains. Although the
majority of PMC sites showed increased broad gamma band activity
(30-180 Hz) during rest, some PMC sites, proximal to the retrosplenial
cortex, responded selectively to autobiographical stimuli. However, no
site responded to both conditions, even though they were located within
the boundaries of the DMN identified with resting-state functional
imaging and similarly deactivated during arithmetic processing. These
findings, which provide electrophysiological evidence for heterogeneity
within the core of the DMN, will have important implications for
neuroimaging studies of the DMN
Effective one-dimensionality of AC hopping conduction in the extreme disorder limit
It is argued that in the limit of extreme disorder AC hopping is dominated by
"percolation paths". Modelling a percolation path as a one-dimensional path
with a sharp jump rate cut-off leads to an expression for the universal AC
conductivity, that fits computer simulations in two and three dimensions better
than the effective medium approximation.Comment: 6 postscript figure
Head orientation benefit to speech intelligibility in noise for cochlear implant users and in realistic listening conditions
Cochlear implant (CI) users suffer from elevated speech-reception thresholds and may rely on lip reading. Traditional measures of spatial release from masking quantify speech-reception-threshold improvement with azimuthal separation of target speaker and interferers and with the listener facing the target speaker. Substantial benefits of orienting the head away from the target speaker were predicted by a model of spatial release from masking. Audio-only and audio-visual speech-reception thresholds in normal-hearing (NH) listeners and bilateral and unilateral CI users confirmed model predictions of this head-orientation benefit. The benefit ranged 2–5 dB for a modest 30� orientation that did not affect the lip-reading benefit. NH listeners’ and CI users’ lip-reading benefit measured 3 and 5 dB, respectively. A head-orientation benefit of �2 dB was also both predicted and observed in NH listeners in realistic simulations of a restaurant listening environment. Exploiting the benefit of head orientation is thus a robust hearing tactic that would benefit both NH listeners and CI users in noisy listening conditions
Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin
The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan-Kerala Basin, coupledwith a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and o¡shore sediment loading in order to test competing conceptual models for the development of high-elevation passive margins. The Konkan-Kerala Basin contains an estimated 109,000 km<sup>3</sup>; of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore that flexure is an important component in the development of the Western Indian Margin.There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic
High-temperature molecular beam epitaxy of hexagonal boron nitride with high active nitrogen fluxes
Hexagonal boron nitride (hBN) has attracted much attention as a key component in van der Waals heterostructures and as a wide band gap material for deep-ultraviolet devices. We have recently demonstrated plasma-assisted molecular beam epitaxy (PA-MBE) of hBN layers on substrates of highly oriented pyrolytic graphite at high substrate temperatures of ~1400 oC. The current paper will present data on the high-temperature PA-MBE growth of hBN layers using a high-efficiency RF nitrogen plasma source. Despite the more than 3-fold increase in nitrogen flux with this new source, we saw no significant increase in the growth rates of the hBN layers, indicating that the growth rate of hBN layers is controlled by the boron arrival rate. The hBN thickness increases to ~90 nm with decrease in the growth temperature to 1080 oC. However, the decrease in the MBE temperature led to a deterioration of the optical properties of the hBN. The optical absorption data indicate that an increase in the active nitrogen flux during the MBE process improves the optical properties of hBN and suppresses defect related optical absorption in the energy range 5.0-5.5 eV
- …
