812 research outputs found
Rental Housing Assistance for the 21st Century
Current rental housing assistance programs are not designed to provide a safety net for people whose lives are volatile, or to encourage poor people to live in good locations. These failings can be corrected. HUD should establish a program of rental insurance-like mortgage insurance, but for renters. Low income housing assistance formulas should be revised to reward good neighborhood features, and punish bad
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
Both the Caspase CSP-1 and a Caspase-Independent Pathway Promote Programmed Cell Death in Parallel to the Canonical Pathway for Apoptosis in Caenorhabditis elegans
Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3), of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell corpses in parallel to the canonical apoptosis pathway involving CED-3 activation.Howard Hughes Medical InstituteDamon Runyon Cancer Research FoundationCharles A. King Trus
Bax translocation to mitochondria subsequent to a rapid loss of mitochondrial membrane potential
Bax, a pro-apoptotic member of the Bcl-2 family, is a cytosolic protein that inserts into mitochondrial membranes upon induction of cell death. Using the green fluorescent protein fused to Bax (GFP-Bax) to quantitate mitochondrial binding in living cells we have investigated the cause of Bax association with mitochondria and the time course relative to endogenous and induced changes in mitochondrial membrane potential (Delta Psi (m)). We have found that staurosporine (STS) induces a loss in Delta Psi (m) before GFP-Bax translocation can be measured. the onset of the Delta Psi (m) loss is followed by a rapid and complete collapse of Delta Psi (m) which is followed by Bax association with mitochondria. the mitochondria uncoupler FCCP, in the presence of the F-1-F-0 ATPase inhibitor oligomycin, can trigger Bax translocation to mitochondria suggesting that when ATP levels are maintained a collapse of Delta Psi (m) induces Bax translocation. Neither FCCP nor oligomycin alone alters Bax location. Bax association with mitochondria is also triggered by inhibitors of the electron transport chain, antimycin and rotenone, compounds that collapse Delta Psi (m) without inducing rapid ATP hydrolysis that typically occurs with uncouplers such as FCCP. Taken together, our results suggest that alterations in mitochondrial energization associated with apoptosis can initiate Bax docking to mitochondria.NINDS, Biochem Sect, Surg Neurol Branch, NIH, Bethesda, MD 20892 USAUniversidade Federal de São Paulo, Dept Farmacol, São Paulo, BrazilNICHHD, Lab Cellular & Mol Neurophysiol, NIH, Bethesda, MD 20892 USAMed Univ S Carolina, Charleston, SC 29425 USAUniversidade Federal de São Paulo, Dept Farmacol, São Paulo, BrazilWeb of Scienc
NoX: a Compact Open-Source RISC-V Processor for Multi-Processor Systems-on-Chip
IoT applications are one of the driving forces in making systems energy and
power-efficient, given their resource constraints. However, because of
security, latency, and transmission, we advocate for local computing through
multi-processor systems-on-chip (MPSoCs) for edge computing. The RISC-V ISA has
grown in academia and industry due to its flexibility. Still, available
open-source cores cannot be seamlessly integrated into MPSoCs for a fast time
to market. This paper presents NoX, a compact open-source plug-and-play 32-bit
RISC-V core designed in System Verilog for efficient data processing in MPSoCs.
NoX has a 4-stage single-issue in-order pipeline with full bypass, providing an
efficient resource-constrained architecture. Compared to industry and academia
resource-constrained RISC-V cores, NoX offers a better resource usage and
performance trade-off
Avaliação de acessos de Aegilops tauschii quanto ao recrescimento das raízes em solução nutritiva após exposição ao alumínio.
Área: Melhoramento, Aptidão Industrial e Sementes
The pH Requirement for in Vivo Activity of the Iron-Deficiency-Induced "Turbo" Ferric Chelate Reductase (A Comparison of the Iron-Deficiency-Induced Iron Reductase Activities of Intact Plants and Isolated Plasma Membrane Fractions in Sugar Beet)
- …
