81 research outputs found
An ‘In the Wild’ Experiment on Presence and Embodiment using Consumer Virtual Reality Equipment
Consumer virtual reality systems are now becoming widely available. We report on a study on presence and embodiment within virtual reality that was conducted ‘in the wild’, in that data was collected from devices owned by consumers in uncontrolled settings, not in a traditional laboratory setting. Users of Samsung Gear VR and Google Cardboard devices were invited by web pages and email invitation to download and run an app that presented a scenario where the participant would sit in a bar watching a singer. Each participant saw one of eight variations of the scenario: with or without a self-avatar; singer inviting the participant to tap along or not; singer looking at the participant or not. Despite the uncontrolled situation of the experiment, results from an in-app questionnaire showed tentative evidence that a self-avatar had a positive effect on self-report of presence and embodiment, and that the singer inviting the participant to tap along had a negative effect on self-report of embodiment. We discuss the limitations of the study and the platforms, and the potential for future open virtual reality experiments
The Responses of Medical General Practitioners to Unreasonable Patient Demand for Antibiotics - A Study of Medical Ethics Using Immersive Virtual Reality
BACKGROUND: Dealing with insistent patient demand for antibiotics is an all too common part of a General Practitioner's daily routine. This study explores the extent to which portable Immersive Virtual Reality technology can help us gain an accurate understanding of the factors that influence a doctor's response to the ethical challenge underlying such tenacious requests for antibiotics (given the threat posed by growing anti-bacterial resistance worldwide). It also considers the potential of such technology to train doctors to face such dilemmas. EXPERIMENT: Twelve experienced GPs and nine trainees were confronted with an increasingly angry demand by a woman to prescribe antibiotics to her mother in the face of inconclusive evidence that such antibiotic prescription is necessary. The daughter and mother were virtual characters displayed in immersive virtual reality. The specific purposes of the study were twofold: first, whether experienced GPs would be more resistant to patient demands than the trainees, and second, to investigate whether medical doctors would take the virtual situation seriously. RESULTS: Eight out of the 9 trainees prescribed the antibiotics, whereas 7 out of the 12 GPs did so. On the basis of a Bayesian analysis, these results yield reasonable statistical evidence in favor of the notion that experienced GPs are more likely to withstand the pressure to prescribe antibiotics than trainee doctors, thus answering our first question positively. As for the second question, a post experience questionnaire assessing the participants' level of presence (together with participants' feedback and body language) suggested that overall participants did tend towards the illusion of being in the consultation room depicted in the virtual reality and that the virtual consultation taking place was really happening
The process of serpentinization in dunite from New Caledonia
Dunite from New Caledonia displays three types of serpentine-dominated veins. The earliest, type 1 veins are narrow (50–100 μm wide) and rarely extend across more than a single olivine grain. They are lizardite, contain abundant brucite and never contain magnetite. Type 2 veins are 0.01 to 0.1 mm wide, extend across several olivine grains and cut across the type 1 veins. They are lizardite, contain magnetite, often in vein interiors, and contain less brucite than type 1 veins. Type 3 veins are dominantly chrysotile, cm-scale, have a magnetite-rich core, and extend for meters or more. Analyses of two representative samples indicate that the type 1 veins have relatively Fe-rich serpentine (XMg = 0.92) and brucite (XMg = 0.82). These minerals are less magnesian than those in the type 2 veins; serpentine has XMg = 0.93–0.94 and brucite has XMg = 0.84. In the magnetite-rich core to the type 3 vein both serpentine (XMg = 0.94–0.97) and one of the two brucite populations (XMg = 0.94) are Mg-rich. Opx in harzburgite layers in these samples is cut by serpentine veins that are on the order of 0.05 mm wide. The serpentine veins after Opx lack talc or magnetite and, as with veins cutting olivine, the older veins are more Fe rich (XMg = 0.84) than the younger veins (XMg = 0.90). We conclude that the formation of magnetite was accompanied by the extraction of iron from the early-formed serpentine and brucite.Thermodynamic calculations suggest that the type 1 veins formed in a rock-dominated system where the activities of FeO, MgO, and SiO2 were dictated by the compositions of olivine and orthopyroxene. In contrast the type 2 veins were formed in a more fluid-dominated system where the infiltrating fluid was relatively oxidizing and out of equilibrium with the original brucite–serpentine assemblage. Reduction of this fluid was accompanied by reaction of brucite and serpentine to magnetite and hydrogen. By producing magnetite, this reaction extracted iron from brucite and serpentine, making them both more magnesian. This would drive the brucite–serpentine–magnetite assemblage to higher oxygen fugacity, progressively decreasing the efficiency of the magnetite-forming reactions
Bystander responses to a violent incident in an immersive virtual environment
Under what conditions will a bystander intervene to try to stop a violent attack by one person on another? It is generally believed that the greater the size of the crowd of bystanders, the less the chance that any of them will intervene. A complementary model is that social identity is critical as an explanatory variable. For example, when the bystander shares common social identity with the victim the probability of intervention is enhanced, other things being equal. However, it is generally not possible to study such hypotheses experimentally for practical and ethical reasons. Here we show that an experiment that depicts a violent incident at life-size in immersive virtual reality lends support to the social identity explanation. 40 male supporters of Arsenal Football Club in England were recruited for a two-factor between-groups experiment: the victim was either an Arsenal supporter or not (in-group/out-group), and looked towards the participant for help or not during the confrontation. The response variables were the numbers of verbal and physical interventions by the participant during the violent argument. The number of physical interventions had a significantly greater mean in the ingroup condition compared to the out-group. The more that participants perceived that the Victim was looking to them for help the greater the number of interventions in the in-group but not in the out-group. These results are supported by standard statistical analysis of variance, with more detailed findings obtained by a symbolic regression procedure based on genetic programming. Verbal interventions made during their experience, and analysis of post-experiment interview data suggest that in-group members were more prone to confrontational intervention compared to the out-group who were more prone to make statements to try to diffuse the situation
Consensus Based Networking of Distributed Virtual Environments
Distributed Virtual Environments (DVEs) are challenging to create as the goals of consistency and responsiveness become contradictory under increasing latency. DVEs have been considered as both distributed transactional databases and force-reflection systems. Both are good approaches, but they do have drawbacks. Transactional systems do not support Level 3 (L3) collaboration: manipulating the same degree-of-freedom at the same time. Force-reflection requires a client-server architecture and stabilisation techniques. With Consensus Based Networking (CBN), we suggest DVEs be considered as a distributed data-fusion problem. Many simulations run in parallel and exchange their states, with remote states integrated with continous authority. Over time the exchanges average out local differences, performing a distribued-average of a consistent, shared state. CBN aims to build simulations that are highly responsive, but consistent enough for use cases such as the piano-movers problem. CBN's support for heterogeneous nodes can transparently couple different input methods, avoid the requirement of determinism, and provide more options for personal control over the shared experience. Our work is early, however we demonstrate many successes, including L3 collaboration in room-scale VR, 1000's of interacting objects, complex configurations such as stacking, and transparent coupling of haptic devices. These have been shown before, but each with a different technique; CBN supports them all within a single, unified system
Deformational temperatures across the Lesser Himalayan Sequence in eastern Bhutan and their implications for the deformation history of the Main Central Thrust
We postulate that the inverted metamorphic sequence in the Lesser Himalayan Sequence of the Himalayan orogen is a finite product of its deformation and temperature history. To explain the formation of this inverted metamorphic sequence across the Lesser Himalayan Sequence with a focus on the Main Central Thrust (MCT) in eastern Bhutan, we determined the metamorphic peak temperatures by Raman spectroscopy of carbonaceous material and established the deformation temperatures by Ti-in-quartz thermobarometry and quartz c axis textures. These data were combined with thermochronology, including new and published Ar-40/Ar-39 ages of muscovite and published apatite fission track, and apatite and zircon (U-Th)/He ages. To obtain accurate metamorphic, deformation, and closure temperatures of thermochronological systems, pressures and cooling rates for the period of interest were derived by inverse modeling of multiple thermochronological data sets, and temperatures were determined by iterative calculations. The Raman spectroscopy of carbonaceous material results indicate two temperature sequences separated by a thrust. In the external sequence, peak temperatures are constant across the structural strike, consistent with the observed hinterland-dipping duplex system. In the internal temperature sequence associated with the MCT shear zone, each geothermometer yields an apparent inverted temperature gradient although with different temperature ranges, and all temperatures appear to be retrograde. These observations are consistent with the quartz microfabrics. Further, all thermochronometers indicate upward younging across the MCT. We interpret our data as a composite peak and deformation temperature sequence that formed successively and reflects the broadening and narrowing of the MCT shear zone in which the ductile deformation lasted until similar to 11 Ma.Peer reviewe
Beyond blur: real-time ventral metamers for foveated rendering
To peripheral vision, a pair of physically different images can look the same. Such pairs are metamers relative to each other, just as physically-different spectra of light are perceived as the same color. We propose a real-time method to compute such ventral metamers for foveated rendering where, in particular for near-eye displays, the largest part of the framebuffer maps to the periphery. This improves in quality over state-of-the-art foveation methods which blur the periphery. Work in Vision Science has established how peripheral stimuli are ventral metamers if their statistics are similar. Existing methods, however, require a costly optimization process to find such metamers. To this end, we propose a novel type of statistics particularly well-suited for practical real-time rendering: smooth moments of steerable filter responses. These can be extracted from images in time constant in the number of pixels and in parallel over all pixels using a GPU. Further, we show that they can be compressed effectively and transmitted at low bandwidth. Finally, computing realizations of those statistics can again be performed in constant time and in parallel. This enables a new level of quality for foveated applications such as such as remote rendering, level-of-detail and Monte-Carlo denoising. In a user study, we finally show how human task performance increases and foveation artifacts are less suspicious, when using our method compared to common blurring
Metameric Inpainting for Image Warping
Image-warping , a per-pixel deformation of one image into another, is an essential component in immersive visual experiences such as virtual reality or augmented reality. The primary issue with image warping is disocclusions, where occluded (and hence unknown) parts of the input image would be required to compose the output image. We introduce a new image warping method, Metameric image inpainting - an approach for hole-filling in real-time with foundations in human visual perception. Our method estimates image feature statistics of disoccluded regions from their neighbours. These statistics are inpainted and used to synthesise visuals in real-time that are less noticeable to study participants, particularly in peripheral vision. Our method offers speed improvements over the standard structured image inpainting methods while improving realism over colour-based inpainting such as push-pull. Hence, our work paves the way towards future applications such as depth image-based rendering, 6-DoF 360 rendering, and remote render-streaming
Quality of Service Impact on Edge Physics Simulations for VR
Mobile HMDs must sacrifice compute performance to achieve ergonomic and power requirements for extended use. Consequently, applications must either reduce rendering and simulation complexity - along with the richness of the experience - or offload complexity to a server. Within the context of edge-computing, a popular way to do this is through render streaming. Render streaming has been demonstrated for desktops and consoles. It has also been explored for HMDs. However, the latency requirements of head tracking make this application much more challenging. While mobile GPUs are not yet as capable as their desktop counterparts, we note that they are becoming more powerful and efficient. With the hard requirements of VR, it is worth continuing to investigate what schemes could optimally balance load, latency and quality. We propose an alternative we call edge-physics: streaming at the scene-graph level from a simulation running on edge-resources, analogous to cluster rendering. Scene streaming is not only straightforward, but compute and bandwidth efficient. The most demanding loops run locally. Jobs that hit the power-wall of mobile CPUs are off-loaded, while improving GPUs are leveraged, maximising compute utilisation. In this paper we create a prototypical implementation and evaluate its potential in terms of fidelity, bandwidth and performance. We show that an effective system which maintains high consistencies on typical edge-links can be easily built, but that some traditional concepts are not applicable, and a better understanding of the perception of motion is required to evaluate such a system comprehensively
A whole-brain monosynaptic input connectome to neuron classes in mouse visual cortex
Identification of structural connections between neurons is a prerequisite to understanding brain function. Here we developed a pipeline to systematically map brain-wide monosynaptic input connections to genetically defined neuronal populations using an optimized rabies tracing system. We used mouse visual cortex as the exemplar system and revealed quantitative target-specific, layer-specific and cell-class-specific differences in its presynaptic connectomes. The retrograde connectivity indicates the presence of ventral and dorsal visual streams and further reveals topographically organized and continuously varying subnetworks mediated by different higher visual areas. The visual cortex hierarchy can be derived from intracortical feedforward and feedback pathways mediated by upper-layer and lower-layer input neurons. We also identify a new role for layer 6 neurons in mediating reciprocal interhemispheric connections. This study expands our knowledge of the visual system connectomes and demonstrates that the pipeline can be scaled up to dissect connectivity of different cell populations across the mouse brain
- …
