435 research outputs found

    QPO Frequency - Color Radius Connection in GRS 1915+105: a Possible Turnover supporting AEI predictions

    Full text link
    It is widely believed that the low frequency quasi-periodic X-ray oscillations observed in microquasars are correlated to, but do not originate at, the physical radius of the inner edge of the accretion disk. Models relating the QPO frequency and color radius are hindered by observations showing contradicting trend correlations between the microquasars GRO 1655-40, XTE J1550-564 and GRS 1915+105. The first shows a negative correlation and the latter two a positive one. By taking into account relativistic rotation in the accretion disk, the Accretion-Ejection Instability (AEI) model predicts a turnover in the frequency-radius relationship, and has been successfully compared with observations of GRO J1655-40 and GRS 1915+105. We present further evidence supporting the AEI model prediction by using observations of the microquasar GRS 1915+105. By combining a data set including θ\theta-, β\beta- and α\alpha-class X-ray light curves, we observe positive, negative and null correlations in the frequency-radius relationship. This is the first time a single source has shown a possible inversion in the QPO frequency-color radius curve predicted by the AEI model

    Numerical simulations of the Accretion-Ejection Instability in magnetised accretion disks

    Get PDF
    The Accretion-Ejection Instability (AEI) described by Tagger & Pellat (1999) is explored numerically using a global 2d model of the inner region of a magnetised accretion disk. The disk is initially currentless but threaded by a vertical magnetic field created by external currents, and frozen in the flow. In agreement with the theory a spiral instability, similar in many ways to those observed in self-gravitating disks, develops when the magnetic field is, within a factor of a few, at equipartition with the disk thermal pressure. Perturbations in the flow build up currents and create a perturbed magnetic field within the disk. The present non-linear simulations give good evidence that such an instability can occur in the inner region of accretion disks, and generate accretion of gas and vertical magnetic flux toward the central object, if the equilibrium radial profiles of density and magnetic flux exceed a critical threshold.Comment: single tar file with GIF figure

    Amplification of MHD waves in swirling astrophysical flows

    Full text link
    Recently it was found that helical magnetized flows efficiently amplify Alfv\'en waves (Rogava et al. 2003, A&A, v.399, p.421). This robust and manifold nonmodal effect was found to involve regimes of transient algebraic growth (for purely ejectional flows), and exponential instabilities of both usual and parametric nature. However the study was made in the incompressible limit and an important question remained open - whether this amplification is inherent to swirling MHD flows per se and what is the degree of its dependence on the incompressibility condition. In this paper, in order to clear up this important question, we consider full compressible spectrum of MHD modes: Alfv\'en waves (AW), slow magnetosonic waves (SMW) and fast magnetosonic waves (FMW). We find that helical flows inseparably blend these waves with each other and make them unstable, creating the efficient energy transfer from the mean flow to the waves. The possible role of these instabilities for the onset of the MHD turbulence, self-heating of the flow and the overall dynamics of astrophysical flows are discussed.Comment: 8 pages, 9 figures, accepted for publication (18.03.2003) in the "Astronomy and Astrophysics

    KH15D: a star eclipsed by a large scale dusty vortex?

    Full text link
    We propose that the large photometric variations of KH15D are due to an eclipsing swarm of solid particles trapped in giant gaseous vortex rotating at \~0.2 AU from the star. The efficiency of the capture-in-vortex mechanism easily explains the observed large optical depth. The weaker opacity at mid-eclipse is consistent with a size segregation of the particles toward the center of the vortex. This dusty structure must extend over ~1/3 of an orbit to account for the long eclipse duration. The estimated size of the trapped particles is found to range from 1 to 10cm, consistent with the gray extinction of the star. The observations of KH15D support the idea that giant vortices can grow in circumstellar disks and play a central role in planet formation.Comment: Accepted in ApJ Letters - 4 pages - 2 figure

    Swirling astrophysical flows - efficient amplifiers of Alfven waves

    Full text link
    We show that a helical shear flow of a magnetized plasma may serve as an efficient amplifier of Alfven waves. We find that even when the flow is purely ejectional (i.e., when no rotation is present) Alfven waves are amplified through the transient, shear-induced, algebraic amplification process. Series of transient amplifications, taking place sequentially along the flow, may result in a cascade amplification of these waves. However, when a flow is swirling or helical (i.e., some rotation is imposed on the plasma motion), Alfven waves become subject to new, much more powerful shear instabilities. In this case, depending on the type of differential rotation, both usual and parametric instabilities may appear. We claim that these phenomena may lead to the generation of large amplitude Alfven waves and the mechanism may account for the appearance of such waves in the solar atmosphere, in accretion-ejecion flows and in accretion columns. These processes may also serve as an important initial (linear and nonmodal) phase in the ultimate subcritical transition to MHD Alfvenic turbulence in various kinds of astrophysical shear flows.Comment: 12 pages, 11 figures, accepted for publication (25-11-02) in Astronomy and Astrophysic

    Blob ejection from advection-dominated accretion flow: observational consequences

    Get PDF
    There is increasing evidence for the presence of an optically thin advection-dominated accretion flow (ADAF) in low luminosity active galactic nuclei and radio-loud quasars. The present paper is devoted to explore the fate of a blob ejected from an ADAF, and to discuss its observational consequences. It is inevitable for the ejected blob to drastically expand into its surroundings. Consequently, it is expected that a group of relativistic electrons should be accelerated, which may lead to nonthermal flares, since a strong shock will be formed by the interaction between the blob and its surroundings. Then the blob cools down efficiently, leading to the appearance of recombination lines about 10510^5s after its ejection from an ADAF. We apply this model to NGC 4258 for some observational prediction, and to PKS 2149--306 for the explanation of observational evidence. Future simultaneous observations of recombination X-ray lines and continuum emission are highly desired to test the present model.Comment: 4 pages in emulateapj.sty, no figure. Accepted by ApJ Letter

    A Hot Helium Plasma in the Galactic Center Region

    Full text link
    Recent X-ray observations by the space mission Chandra confirmed the astonishing evidence for a diffuse, hot, thermal plasma at a temperature of 9. 10710^7 K (8 keV) found by previous surveys to extend over a few hundred parsecs in the Galactic Centre region. This plasma coexists with the usual components of the interstellar medium such as cold molecular clouds and a soft (~0.8 keV) component produced by supernova remnants, and its origin remains uncertain. First, simple calculations using a mean sound speed for a hydrogen-dominated plasma have suggested that it should not be gravitationally bound, and thus requires a huge energy source to heat it in less than the escape time. Second, an astrophysical mechanism must be found to generate such a high temperature. No known source has been identified to fulfill both requirements. Here we address the energetics problem and show that the hot component could actually be a gravitationally confined helium plasma. We illustrate the new prospects this opens by discussing the origin of this gas, and by suggesting possible heating mechanisms.Comment: 9 pages, accepted for publication in APJ

    X-ray Properties of Black-Hole Binaries

    Get PDF
    We review the properties and behavior X-ray binaries that contain an accreting black hole. The larger majority of such systems are X-ray transients, and many of them were observed in daily pointings with RXTE throughout the course of their outbursts. The complex evolution of these sources is described in terms of common behavior patterns illustrated with comprehensive overview diagrams for six selected systems. Central to this comparison are three X-ray states of accretion, which are reviewed and defined quantitatively. Each state yields phenomena that arise in strong gravitational fields. We sketch a scenario for the potential impact of black hole observations on physics and discuss a current frontier topic: the measurement of black hole spin.Comment: 39 pages, 12 figures, ARAA, vol. 44, in pres

    Super-Reflection in Fluid Discs: Corotation Amplifier, Corotation Resonance, Rossby Waves, and Overstable Modes

    Full text link
    In differentially rotating discs with no self-gravity, density waves cannot propagate around the corotation, where the wave pattern rotation speed equals the fluid rotation rate. Waves incident upon the corotation barrier may be super-reflected (commonly referred to as corotation amplifier), but the reflection can be strongly affected by wave absorptions at the corotation resonance/singularity. The sign of the absorption is related to the Rossby wave zone very near the corotation radius. We derive the explicit expressions for the complex reflection and transmission coefficients, taking into account wave absorption at the corotation resonance. We show that for generic discs, this absorption plays a much more important role than wave transmission across the corotation barrier. Depending on the sign of the gradient of the specific vorticity of the disc the corotation resonance can either enhance or diminish the super-reflectivity, and this can be understood in terms of the location of the Rossby wave zone relative to the corotation radius. Our results provide the explicit conditions (in terms of disc thickness, rotation profile and specific vorticity gradient) for which super-reflection can be achieved. Global overstable disc modes may be possible for discs with super-reflection at the corotation barrier.Comment: 16 pages, 5 figures, MNRAS in pres
    corecore