6,921 research outputs found
The Impact of Working at Home on Career Outcomes of Professional Employees
This research examines the claim that working at home adversely affects employees\u27 career progress, by comparing the career achievements of professional employees who work at home and those who do not. The findings contradict assertions of negative consequences of working at home. Implications for research and practice are discussed
The orbital statistics of stellar inspiral and relaxation near a massive black hole: characterizing gravitational wave sources
We study the orbital parameters distribution of stars that are scattered into
nearly radial orbits and then spiral into a massive black hole (MBH) due to
dissipation, in particular by emission of gravitational waves (GW). This is
important for GW detection, e.g. by the Laser Interferometer Space Antenna
(LISA). Signal identification requires knowledge of the waveforms, which depend
on the orbital parameters. We use analytical and Monte Carlo methods to analyze
the interplay between GW dissipation and scattering in the presence of a mass
sink during the transition from the initial scattering-dominated phase to the
final dissipation-dominated phase of the inspiral. Our main results are (1)
Stars typically enter the GW-emitting phase with high eccentricities. (2) The
GW event rate per galaxy is a few per Gyr for typical central stellar cusps,
almost independently of the relaxation time or the MBH mass. (3) For
intermediate mass black holes (IBHs) of ~a thousand solar masses such as may
exist in dense stellar clusters, the orbits are very eccentric and the inspiral
is rapid, so the sources are very short-lived.Comment: ApJ Accepte
On the Construction of Polar Codes
We consider the problem of efficiently constructing polar codes over binary
memoryless symmetric (BMS) channels. The complexity of designing polar codes
via an exact evaluation of the polarized channels to find which ones are "good"
appears to be exponential in the block length. In \cite{TV11}, Tal and Vardy
show that if instead the evaluation if performed approximately, the
construction has only linear complexity. In this paper, we follow this approach
and present a framework where the algorithms of \cite{TV11} and new related
algorithms can be analyzed for complexity and accuracy. We provide numerical
and analytical results on the efficiency of such algorithms, in particular we
show that one can find all the "good" channels (except a vanishing fraction)
with almost linear complexity in block-length (except a polylogarithmic
factor).Comment: In ISIT 201
Resonant relaxation near a massive black hole: the stellar distribution and gravitational wave sources
Resonant relaxation (RR) of orbital angular momenta occurs near massive black
holes (MBHs) where the stellar orbits are nearly Keplerian and so do not
precess significantly. The resulting coherent torques efficiently change the
magnitude of the angular momenta and rotate the orbital inclination in all
directions. As a result, many of the tightly bound stars very near the MBH are
rapidly destroyed by falling into the MBH on low-angular momentum orbits, while
the orbits of the remaining stars are efficiently randomized. We solve
numerically the Fokker-Planck equation in energy for the steady state
distribution of a single mass population with a RR sink term. We find that the
steady state current of stars, which sustains the accelerated drainage close to
the MBH, can be up to ~10 times larger than that due to non-coherent 2-body
relaxation alone. RR mostly affects tightly bound stars, and so it increases
only moderately the total tidal disruption rate, which is dominated by stars
originating from less bound orbits farther away. We show that the event rate of
gravitational wave (GW) emission from inspiraling stars, originating much
closer to the MBH, is dominated by RR dynamics. The GW event rate depends on
the uncertain efficiency of RR. The efficiency indicated by the few available
simulations implies rates ~10 times higher than those predicted by 2-body
relaxation, which would improve the prospects of detecting such events by
future GW detectors, such as LISA. However, a higher, but still plausible RR
efficiency can lead to the drainage of all tightly bound stars and strong
suppression of GW events from inspiraling stars. We apply our results to the
Galactic MBH, and show that the observed dynamical properties of stars there
are consistent with RR.Comment: Accepted to ApJ; Minor revision
Analytical Continuation Approaches to Electronic Transport: The Resonant Level Model
The analytical continuation average spectrum method (ASM) and maximum entropy
(MaxEnt) method are applied to the dynamic response of a noninteracting
resonant level model within the framework of the Kubo formula for electric
conductivity. The frequency dependent conductivity is inferred from the
imaginary time current-current correlation function for a wide range of
temperatures, gate voltages and spectral densities representing the leads, and
compared with exact results. We find that the MaxEnt provides more accurate
results compared to the ASM over the full spectral range.Comment: 6 pages, 5 figure
Tidal scattering of stars on supermassive black holes in galactic centers
Some of the mass that feeds the growth of a massive black hole (BH) in a
galactic center is supplied by tidal disruption of stars that approach it on
unbound, low angular momentum orbits. For each star that is disrupted, others
narrowly escape after being subjected to extreme tidal distortion, spin-up,
mixing and mass-loss, which may affect their evolution and appearance. We show
that it is likely that a significant fraction of the stars around massive BHs
in galactic centers have undergone such extreme tidal interactions and survived
subsequent total disruption, either by being deflected off their orbit or by
missing the BH due to its Brownian motion. We discuss possible long-term
observable consequences of this process, which may be relevant for
understanding the nature of stars in galactic centers, and may provide a
signature of the existence of massive BHs there.Comment: 5 pages 4 figures. ApJL in press, minor changes to reflect journal
version including redifinition of unbound tidally disturbed stars and
additional reference
Recommended from our members
MPRAnalyze: statistical framework for massively parallel reporter assays.
Massively parallel reporter assays (MPRAs) can measure the regulatory function of thousands of DNA sequences in a single experiment. Despite growing popularity, MPRA studies are limited by a lack of a unified framework for analyzing the resulting data. Here we present MPRAnalyze: a statistical framework for analyzing MPRA count data. Our model leverages the unique structure of MPRA data to quantify the function of regulatory sequences, compare sequences' activity across different conditions, and provide necessary flexibility in an evolving field. We demonstrate the accuracy and applicability of MPRAnalyze on simulated and published data and compare it with existing methods
Near-Infrared Microlensing of Stars by the Super-Massive Black Hole in the Galactic Center
We investigate microlensing amplification of faint stars in the dense stellar
cluster in the Galactic Center (GC) by the super-massive black hole (BH). Such
events would appear very close to the position of the radio source SgrA*, which
is thought to coincide with the BH, and could be observed during the monitoring
of stellar motions in the GC. We use the observed K-band (2.2 um) luminosity
function (KLF) in the GC and in Baade's Window, as well as stellar population
synthesis computations, to construct KLF models for the inner 300 pc of the
Galaxy. These, and the observed dynamical properties of this region, are used
to compute the rates of microlensing events, which amplify stars above
specified detection thresholds. We present computations of the lensing rates
and amplifications as functions of the event durations (weeks to years), for a
range of detection thresholds. We find that short events dominate the total
rate and that long events tend to have large amplifications. For the current
detection limit of K=17 mag, the total microlensing rate is 0.003 1/yr, and the
rate of events with durations >1 yr is 0.001 1/yr. Recent GC proper motion
studies have revealed the possible presence of one or two variable K-band
sources very close to SgrA* (Genzel et al 97; Ghez et al 98). These sources may
have attained peak brightnesses of K~15 mag, about 1.5-2 mag above the
observational detection limits, and appear to have varied on a timescale of ~1
yr. This behavior is consistent with long-duration microlensing of faint stars
by the BH. However, we estimate that the probability that such an event could
have been detected during the course of the recent proper motion studies is
\~0.5%. A ten-fold improvement in the detection limit and 10 yr of monthly
monitoring would increase the total detection probability to ~20%. (Abridged)Comment: 29 p. with 5 figs. To appear in ApJ. Changed to reflect published
version. Short discussions of solar metallicity luminosity function and
star-star microlensing adde
Can Long-Range Nuclear Properties Be Influenced By Short Range Interactions? A chiral dynamics estimate
Recent experiments and many-body calculations indicate that approximately
20\% of the nucleons in medium and heavy nuclei () are part of
short-range correlated (SRC) primarily neutron-proton () pairs. We find
that using chiral dynamics to account for the formation of pairs due to
the effects of iterated and irreducible two-pion exchange leads to values
consistent with the 20\% level. We further apply chiral dynamics to study how
these correlations influence the calculations of nuclear charge radii, that
traditionally truncate their effect, to find that they are capable of
introducing non-negligible effects.Comment: 6 pages, 0 figures. This version includes many improvement
- …
