1,894 research outputs found
On a Generalized Fifth-Order Integrable Evolution Equation and its Hierarchy
A general form of the fifth-order nonlinear evolution equation is considered.
Helmholtz solution of the inverse variational problem is used to derive
conditions under which this equation admits an analytic representation. A
Lennard type recursion operator is then employed to construct a hierarchy of
Lagrangian equations. It is explicitly demonstrated that the constructed system
of equations has a Lax representation and two compatible Hamiltonian
structures. The homogeneous balance method is used to derive analytic soliton
solutions of the third- and fifth-order equations.Comment: 16 pages, 1 figur
Bright solitons in asymmetrically trapped Bose-Einstein condensate
We study the dynamics of bright solitons in a Bose-Einstein condensate (BEC)
confined in a highly asymmetric trap. While working within the f ramework of a
variational approach we carry out the stability analysis o f BEC solitons
against collapse. When the number of atoms in the soliton exceeds a critical
number , it undergoes the so called primary col lapse. We find an
analytical expression for in terms of appropriat e experimental
quantities that are used to produce and confine the conde nsate. We further
demonstrate that, in the geometry of the problem consi dered, the width of the
soliton varies inversely as the number of consti tuent atoms.Comment: 5 pages, 1 figure
Experimental Realization of Quantum-Resonance Ratchets
Quantum-resonance ratchets associated with the periodically kicked particle
are experimentally realized for the first time. This is achieved by using a
Bose-Einstein condensate exposed to a pulsed standing light wave and prepared
in an initial state differing from the usual plane wave. Both the standing-wave
potential and the initial state have a point symmetry around some center and
the ratchet arises from the non-coincidence of the two centers. The dependence
of the directed quantum transport on the quasimomentum is studied. A detailed
theoretical analysis is used to explain the experimental results.Comment: Accepted for publication in Physical Review Letters (November 2007
Implications of surface noise for the motional coherence of trapped ions
Electric noise from metallic surfaces is a major obstacle towards quantum
applications with trapped ions due to motional heating of the ions. Here, we
discuss how the same noise source can also lead to pure dephasing of motional
quantum states. The mechanism is particularly relevant at small ion-surface
distances, thus imposing a new constraint on trap miniaturization. By means of
a free induction decay experiment, we measure the dephasing time of the motion
of a single ion trapped 50~m above a Cu-Al surface. From the dephasing
times we extract the integrated noise below the secular frequency of the ion.
We find that none of the most commonly discussed surface noise models for ion
traps describes both, the observed heating as well as the measured dephasing,
satisfactorily. Thus, our measurements provide a benchmark for future models
for the electric noise emitted by metallic surfaces.Comment: (5 pages, 4 figures
The Schrodinger equation with Hulthen potential plus ring-shaped potential
We present the solutions of the Schrdinger equation with the
Hulthn potential plus ring-shape potential for states
within the framework of an exponential approximation of the centrifugal
potential.Solutions to the corresponding angular and radial equations are
obtained in terms of special functions using the conventional Nikiforov-Uvarov
method. The normalization constant for the Hulthn potential is also
computed.Comment: Typed with LateX,12 Pages, Typos correcte
Multiagent cooperation for solving global optimization problems: an extendible framework with example cooperation strategies
This paper proposes the use of multiagent cooperation for solving global optimization problems through the introduction of a new multiagent environment, MANGO. The strength of the environment lays in itsflexible structure based on communicating software agents that attempt to solve a problem cooperatively. This structure allows the execution of a wide range of global optimization algorithms described as a set of interacting operations. At one extreme, MANGO welcomes an individual non-cooperating agent, which is basically the traditional way of solving a global optimization problem. At the other extreme, autonomous agents existing in the environment cooperate as they see fit during run time. We explain the development and communication tools provided in the environment as well as examples of agent realizations and cooperation scenarios. We also show how the multiagent structure is more effective than having a single nonlinear optimization algorithm with randomly selected initial points
Electronic Signatures in E-Healthcare: The Need for a Federal Standard
Healthcare, like many industries, is fast embracing the benefits of modern information technology ( IT ). The wide range of available publications on the use of IT in healthcare indicates that IT provides the promise of faster and more comprehensive information about all aspects of the healthcare delivery process, to all classes of its consumers - patients, doctors, nurses, insurance adjudicators, health inspectors, epidemiologists, and biostatisticians. But the drive towards electronic information in health care is not rooted merely in efficiency; more recently, significant emphasis has been placed on patient safety issues raised by the Institute of Medicine\u27s ( IOM ) year 2001 quality report on the subject. It is believed that the deficiencies indicated in that report can be substantially overcome by the use of IT in health care. However, to make this transition successful and complete, all aspects of health care delivery, information management, and business transactions, have to be logically migrated into the electronic world. This includes the function and use of the signature. The use of signatures in business contexts has traditionally provided two functions of legal significance: 1) evidence that can attribute documents to a particular party, and 2) indication of assent and intent that the documents have legal effect. In the recent decades, state and federal statutes have substantiated these functional attributes to digital or electronic signatures. Many of these statutes derive from model codes, such as the Uniform Electronic Transactions Act ( UETA ), that attempt to standardize use and technology surrounding electronic signatures. Subsequent sections will attempt to identify gaps in the standards which prevent true transaction portability. Lack of portability defeats one of the fundamental goals of health care IT solutions - improved efficiency. The discussion will end with a proposal for a uniform federal statutory scheme for standardized electronic signatures for health care
Prediction of anti-Alzheimer’s activity of flavonoids targeting acetylcholinesterase in silico
Introduction – Prenylated and pyrano-flavonoids of the genus Artocarpus J. R. Forster & G. Forster are well known for their acetylcholinesterase (AchE) inhibitory, anticholinergic, antiinflammatory, antimicrobial, antioxidant, antiproliferative and tyrosinase inhibitory activities. Some of these compounds have also been shown to be effective against Alzheimer’s disease. Objective – The aim of the in silico study was to establish protocols to predict the most effective flavonoid from prenylated and pyrano-flavonoid classes for AchE inhibition linking to the potential treatment of Alzheimer’s disease. Methodology – Three flavonoids isolated from Artocarpus anisophyllus Miq. were selected for the study. With these compounds, Lipinski filter, ADME/Tox screening, molecular docking and QSAR were performed in silico. In vitro activity was evaluated by bioactivity staining based on the Ellman’s method. Results – In the Lipinski filter and ADME/Tox screening, all test compounds produced positive results, but in the target fishing, only one flavonoid could successfully target AchE. Molecular docking was performed on this flavonoid, and this compound gained the score as -13.5762. From the QSAR analysis the IC50 was found to be 1659.59 nM. Again, 100 derivatives were generated from the parent compound and docking was performed. The derivative number 20 was the best scorer i.e., -31.6392 and IC50 was predicted as 6.025 nM. Conclusion – Results indicated that flavonoids could be efficient inhibitors of AchE and thus, could be useful in the management of Alzheimer’s disease
- …
