2,690 research outputs found
Design and Fabrication of Densified Biomass Briquette Maker Machine
The project we designing & fabricating is to reduce the problems of Cutting Trees for fire logs. “Leaf Log Maker Machine” is designed to make dry leaves get compressed and made to logs as a fuel. Typically, dead leaves are dumped a lot in landfills and one of the problems with leaving wet leaves to decompose like this is that they give off methane 20 times more poisonous gas than carbon dioxide. In contrast, when leaves are burnt, they only give off the carbon they absorb while on the tree they add nothing extra to the environment. This machine is compact, easily accessible & eco-friendly. It can also able to compress wood wastes, papers & tin cans. This machine is to make fuels from the natural resources like dry leaves, instead of cutting them. This machine is easy to understand the operation to user. It had come over many changes and modifications within it
Production of Biodiesel using waste temple oil from Shani Shingnapur temple (Dist. Ahmednagar), Maharashtra, India using chemical and biological methods
In India, due to various mythological and religious reasons hundreds of devotees pour oil over the idols in Hanuman or Maruti and Shani temples. The oil once poured cannot be reutilized and was ultimately wasted. These waste temple oil from Shani Shingnapurwas used to produce biodiesel. Immobilized Pseudomonas aeruginosa was used to catalyze transesterification of waste temple oil. The cells of P.aeruginosa were immobilized within the sodium alginate. Biodiesel production and its applications were gaining popularity in recent years due to decreased petroleum based reserves. Biodiesel cost formed from waste temple oil was higher than that of fossil fuel, because of high raw material cost.To decrease the cost of biofuel, waste temple oil was used as alternative as feedstock. It has lower emission of pollutants; it is biodegradable and enhances engine lubricity. Waste temple oil contains triglycerides that were used for biodiesel production by chemical and biological method.Transesterification reaction of oil produces methyl esters that are substitutes for fatty acid alkyl biodiesel fuel. Characteristics of oil were studied such as specific gravity, viscosity, acid number, saponification number.Parameters such as temperature,oil: methanol ratio were studied and 88%, 96% of biodiesel yield was obtained with effect of temperature and oil: methanol ratio on transesterification reaction. Withaddition ofNaOH or KOH to fatty acids which formed salt known as soap,which is excellent emulsifying and cleaning agents
A validation of the Oswestry Spinal Risk Index
Purpose
The purpose of this study was to validate the Oswestry Spinal Risk Index (OSRI) in an external population. The OSRI predicts survival in patients with metastatic spinal cord compression (MSCC).
Methods
We analysed the data of 100 patients undergoing surgical intervention for MSCC at a tertiary spinal unit and recorded the primary tumour pathology and Karnofsky performance status to calculate the OSRI. Logistic regression models and survival plots were applied to the data in accordance with the original paper.
Results
Lower OSRI scores predicted longer survival. The OSRI score predicted survival accurately in 74% of cases (p = 0.004).
Conclusions
Our study has found that the OSRI is a significant predictor of survival at levels similar to those of the original authors and is a useful and simple tool in aiding complex decision making in patients presenting with MSC
Coordination of Mobile Mules via Facility Location Strategies
In this paper, we study the problem of wireless sensor network (WSN)
maintenance using mobile entities called mules. The mules are deployed in the
area of the WSN in such a way that would minimize the time it takes them to
reach a failed sensor and fix it. The mules must constantly optimize their
collective deployment to account for occupied mules. The objective is to define
the optimal deployment and task allocation strategy for the mules, so that the
sensors' downtime and the mules' traveling distance are minimized. Our
solutions are inspired by research in the field of computational geometry and
the design of our algorithms is based on state of the art approximation
algorithms for the classical problem of facility location. Our empirical
results demonstrate how cooperation enhances the team's performance, and
indicate that a combination of k-Median based deployment with closest-available
task allocation provides the best results in terms of minimizing the sensors'
downtime but is inefficient in terms of the mules' travel distance. A
k-Centroid based deployment produces good results in both criteria.Comment: 12 pages, 6 figures, conferenc
Active wetting of epithelial tissues
Development, regeneration and cancer involve drastic transitions in tissue
morphology. In analogy with the behavior of inert fluids, some of these
transitions have been interpreted as wetting transitions. The validity and
scope of this analogy are unclear, however, because the active cellular forces
that drive tissue wetting have been neither measured nor theoretically
accounted for. Here we show that the transition between 2D epithelial
monolayers and 3D spheroidal aggregates can be understood as an active wetting
transition whose physics differs fundamentally from that of passive wetting
phenomena. By combining an active polar fluid model with measurements of
physical forces as a function of tissue size, contractility, cell-cell and
cell-substrate adhesion, and substrate stiffness, we show that the wetting
transition results from the competition between traction forces and contractile
intercellular stresses. This competition defines a new intrinsic lengthscale
that gives rise to a critical size for the wetting transition in tissues, a
striking feature that has no counterpart in classical wetting. Finally, we show
that active shape fluctuations are dynamically amplified during tissue
dewetting. Overall, we conclude that tissue spreading constitutes a prominent
example of active wetting --- a novel physical scenario that may explain
morphological transitions during tissue morphogenesis and tumor progression
Atomic-scale perspective on the origin of attractive step interactions on Si(113)
Recent experiments have shown that steps on Si(113) surfaces self-organize
into bunches due to a competition between long-range repulsive and short-range
attractive interactions. Using empirical and tight-binding interatomic
potentials, we investigate the physical origin of the short-range attraction,
and report the formation and interaction energies of steps. We find that the
short-range attraction between steps is due to the annihilation of force
monopoles at their edges as they combine to form bunches. Our results for the
strengths of the attractive interactions are consistent with the values
determined from experimental studies on kinetics of faceting.Comment: 4 pages, 3 figures, to appear in Phys. Rev B, Rapid Communication
Assessment of Physicochemical Parameters from Vermicompost of Eudrilus eugenae and Esienia foetida
In present investigation attempt has been made to investigate the physicochemical parameters like pH, temperature, moisture, salinity, nitrogen, electrical conductivity, nitrate, phosphate, chemical oxygen demand (COD) and biological oxygen demand (BOD) from vermicompost of Eudrilus eugenae and Esienia foetida species. The shade of size 10x10 meter and height 1.98 meter was constructed for rearing Eudrilus eugenae and Esienia foetida species. The production of vermicompost was found better in Eudrilus eugenae than Esienia foetida
Dense active matter model of motion patterns in confluent cell monolayers
Epithelial cell monolayers show remarkable displacement and velocity
correlations over distances of ten or more cell sizes that are reminiscent of
supercooled liquids and active nematics. We show that many observed features
can be described within the framework of dense active matter, and argue that
persistent uncoordinated cell motility coupled to the collective elastic modes
of the cell sheet is sufficient to produce swirl-like correlations. We obtain
this result using both continuum active linear elasticity and a normal modes
formalism, and validate analytical predictions with numerical simulations of
two agent-based cell models, soft elastic particles and the self-propelled
Voronoi model together with in-vitro experiments of confluent corneal
epithelial cell sheets. Simulations and normal mode analysis perfectly match
when tissue-level reorganisation occurs on times longer than the persistence
time of cell motility. Our analytical model quantitatively matches measured
velocity correlation functions over more than a decade with a single fitting
parameter.Comment: updated version accepted for publication in Nat. Com
Ballistic nanofriction
Sliding parts in nanosystems such as Nano ElectroMechanical Systems (NEMS)
and nanomotors, increasingly involve large speeds, and rotations as well as
translations of the moving surfaces; yet, the physics of high speed nanoscale
friction is so far unexplored. Here, by simulating the motion of drifting and
of kicked Au clusters on graphite - a workhorse system of experimental
relevance -- we demonstrate and characterize a novel "ballistic" friction
regime at high speed, separate from drift at low speed. The temperature
dependence of the cluster slip distance and time, measuring friction, is
opposite in these two regimes, consistent with theory. Crucial to both regimes
is the interplay of rotations and translations, shown to be correlated in slow
drift but anticorrelated in fast sliding. Despite these differences, we find
the velocity dependence of ballistic friction to be, like drift, viscous
- …
