179 research outputs found

    Africa RISING Ethiopian Highlands Integrated Landscape Management Exchange Visit, 4-7 May 2016

    Get PDF
    United States Agency for International Developmen

    The effect of soil bunds on run-off, soil loss, soil moisture dynamics and crop yield in the Jawe-gumbura watershed, Ethiopia

    Get PDF
    United States Agency for International Developmen

    Landscape positions dictating crop fertilizer responses in wheat-based farming systems of East African Highlands

    Get PDF
    Improving fertilizer use efficiency has remained a challenge, particularly for small-scale farming in undulating ‘abnormal’ landscapes of East Africa. Milne's 1930s concept on ‘Catena’ was considered as a breakthrough in understanding soil variability and its implication on productivity in East African highlands. However, there is limited information on how the ‘Catena’ features could be used for fine tuning fertilizer recommendations. We initiated multiple on-farm replicated experiments in three wheat-growing districts (Endamohoni, Lemo and Worreilu) in the Ethiopian highlands in 2014, 2015 and 2016 to assess landscape positions affecting crop-nutrient responses, identify yield limiting nutrients across the ‘Catena’ (N, P, K, S and Zn) and quantify effects of landscape positions on resources use efficiency. We clustered farmlands across the ‘Catena’ (Hillslopes, Midslopes and Footslopes) based on land scape positions in the respective locations. Wheat yield was more strongly and significantly affected by landscape positions (P N92 P46) while differences between landscape positions diminish at lower rates. Yield benefits due to application of K was significant only in the dry years (P < 0.05), while there was hardly any yield benefit from the application of zinc and sulfur. The crop nitrogen recovery fraction and crop water productivity decreased with an increasing slope regardless of nutrient combinations. The results indicated that the landscape position could be considered as a proxy indicator for targeted fertilizer application, particularly in farms with undulating topographic features. Hillslopes are better served by the application of organic fertilizers along with conservation measures as applying higher rates of mineral fertilizer in hillslopes would rather increase the risk of downstream nutrient movement

    Functionalization of textile cotton fabric with reduced graphene oxide/MnO2/polyaniline based electrode for supercapacitor

    Get PDF
    In this work, a new cotton electrode has been synthesized by coating ternary materials of reduced graphene oxide (rGO), manganese dioxide (MnO2), and polyaniline (PANi) on textile cotton fabric. First, Graphene oxide was deposited on cotton fibers by a simple 'dip and dry' method and chemically reduced into rGO/cotton fabric. MnO2 nanoparticles were accumulated on rGO/cotton fabric by in situ chemical deposition method. PANi layer was coated on rGO/MnO2/cotton fabric by in situ oxidative polymerization technique. A thin PANi coating layer acts as a protective layer on rGO/MnO2/cotton fabric to restrain MnO2 nanoparticles and rGO from dissolution in H2SO4 acidic electrolyte. The specific surface area of cotton electrode was measured using the Brenauer-Emmett-Teller (BET) method. The cyclic voltammetry (CV) results show that the cotton electrode has good capacitive behavior. The ternary cotton electrode exhibits high specific capacitance values of 888 F g(-1) and 252 F g(-1) at a discharge current density of 1 A g(-1) and 25 A g(-1) in 1MH(2)SO(4) electrolyte solution. The high areal specific capacitance of 444 Fcm(-2) was achieved for as-fabricated electrode. Also, the cotton electrode retains around 70% of specific capacitance after 3000 cycles at charge-discharge current density of 15 A g(-1). The slow decrease in specific capacitance is observed with increased discharge current density which proves its excellent rate capability. These results of rGO/MnO2/PANi/cotton fabric electrode show that this can be an excellent electrode for supercapacitor in energy storage devices

    Soil organic carbon dynamics along chrono-sequence land-use systems in the highlands of Ethiopia

    Get PDF
    Soil organic carbon (SOC) dynamics along land-use changes influences the terrestrial and global carbon cycle, the climate, soil fertility, agricultural productivity, and food security. Taking soils under native forests as an appropriate ecological reference, we studied changes in soil organic carbon stock along eight land-use types in the highlands of Ethiopia. The general objective of the study was to investigate the dynamics of SOC stock following chrono-sequence land-use/cover systems in the highlands of Ethiopia. The specific objectives were to: (1) analyze loss due to land degradation; (2) analyze gain due to land restoration; and (3) estimate partial balance of SOC stock for the highlands of Ethiopia. The study followed the principle of the Forest Transition Theory (FTT). Eleven sub-areas were considered from the highlands of Ethiopia. A total of 241 auger composite samples from the topsoil (0−20 cm depth) were collected during December 2017 to June 2018, and analyzed at CropNut soil lab in Nairobi. The study results revealed that there were statistically significant variations (P < 0.05) across the land-use types with the mean stocks ranging from 31.4 Mg SOC ha−1 in soils of intensively grazed lands to 145.0 Mg SOC ha−1 in soils of guasa grasslands. Soils of natural/pristine vegetation and protected guasa grasslands contain the highest amount of SOC stock. Therefore, there should be more aggressive efforts towards an effective protection of these ecosystems. Soils under intensively used croplands and intensively grazed lands lost, respectively, 64.95% and 78.16%, SOC stocks originally accumulated in the top surface layers of the pristine forests. This points for the need to adopt locally feasible land management practices that lead to increased SOC stock and simultaneously reduced CO2 and greenhouse gas emissions from croplands and intensively grazed lands of the highlands of Ethiopia. Compared to stocks of SOC of intensively grazed lands (31.44 Mg SOC ha−1 ), the annual stock gains in soils of controlled grazing lands (4.60 Mg ha−1 ) were > gains in soils of enclosures (3.17 Mg ha−1 ) > gains in soils of afforestation (2.35 Mg SOC ha−1 ), which signifies that converting degraded lands to either controlled grazing lands, enclosures, or afforestation would be a promising practice for an enhanced carbon sequestration across the highlands of Ethiopia. This practice is in line with the United Nations’ Sustainable Development Goals. The estimated regional partial stock balance revealed that the loss and gain ratio was 35.1 in 1991, and it declined to 15.4 in 2001, 2.2 in 2011 and 1.8 in 2015. These decreasing ratios indicate the possibility of closing the gap between the losses and the gains in the near future, and eventually shifting to higher rates of gains than losses. It is also important to note that determined efforts towards the effective protection of natural forests and the creation of enclosures and reforestation areas by local communities for enhanced carbon sequestration will benefit them from payments of carbon emission reduction (CER) credits
    corecore