189 research outputs found
Radiomics on slice-reduced versus full-chest computed tomography for diagnosis and staging of interstitial lung disease in systemic sclerosis: A comparative analysis
PURPOSE
The purpose of this study was to evaluate the efficacy of radiomics derived from slice-reduced CT (srCT) scans versus full-chest CT (fcCT) for diagnosing and staging of interstitial lung disease (ILD) in systemic sclerosis (SSc), considering the potential to reduce radiation exposure.
MATERIAL AND METHODS
The fcCT corresponded to a standard high-resolution full-chest CT whereas the srCT consisted of nine axial slices. 1451 radiomic features in two dimensions from srCT and 1375 features in three dimensions from fcCT scans were extracted from 166 SSc patients. The study included first- and second-order features from original and wavelet-transformed images. We assessed the predictive performance of quantitative CT (qCT)-based logistic regression (LR) models relying on preselected features and machine learning workflows involving LR and extra-trees classifiers with data-driven feature selection. The area under the receiver operating characteristic curve (AUC) was used to estimate model performance.
RESULTS
The best models for diagnosis and staging ILD achieved AUC=0.85±0.08 and AUC=0.82±0.08 with srCT, and AUC=0.83±0.06 and AUC=0.76±0.08 with fcCT, respectively. srCT-based models showed slightly superior performance over fcCT-based models, particularly in 2D-radiomic analyses when interpolation resolution closely matched the original in-plane resolution. For diagnosis, the LR outperformed qCT-models, whereas for staging, the best results were obtained with a qCT-based model.
CONCLUSIONS
Radiomics from srCT is an effective and preferable alternative to fcCT for diagnosing and staging SSc-ILD. This approach not only enhances predictive accuracy but also minimizes radiation exposure risks, offering a promising avenue for improved treatment decision support in SSc-ILD management
Intra- and inter-fraction breath-hold variations and margins for radiotherapy of abdominal targets
Radiotherapy in expiration breath-hold (EBH) has the potential to reduce treatment volumes of abdominal targets compared to an internal target volume concept in free-breathing. The reproducibility of EBH and required safety margins were investigated to quantify this volumetric benefit. Pre- and post-treatment diaphragm position difference and the positioning variability were determined on computed tomography. Systematic and random errors for EBH position reproducibility and positioning variability were calculated, resulting in margins of 7 to 12 mm depending on the prescription isodose and fractionation. A reduced volume was shown for EBH for lesions with superior-inferior breathing motion above 4 to 8 mm
Transferability of radiomic signatures from experimental to human interstitial lung disease
BACKGROUND
Interstitial lung disease (ILD) defines a group of parenchymal lung disorders, characterized by fibrosis as their common final pathophysiological stage. To improve diagnosis and treatment of ILD, there is a need for repetitive non-invasive characterization of lung tissue by quantitative parameters. In this study, we investigated whether CT image patterns found in mice with bleomycin induced lung fibrosis can be translated as prognostic factors to human patients diagnosed with ILD.
METHODS
Bleomycin was used to induce lung fibrosis in mice (n_control = 36, n_experimental = 55). The patient cohort consisted of 98 systemic sclerosis (SSc) patients (n_ILD = 65). Radiomic features (n_histogram = 17, n_texture = 137) were extracted from microCT (mice) and HRCT (patients) images. Predictive performance of the models was evaluated with the area under the receiver-operating characteristic curve (AUC). First, predictive performance of individual features was examined and compared between murine and patient data sets. Second, multivariate models predicting ILD were trained on murine data and tested on patient data. Additionally, the models were reoptimized on patient data to reduce the influence of the domain shift on the performance scores.
RESULTS
Predictive power of individual features in terms of AUC was highly correlated between mice and patients (r = 0.86). A model based only on mean image intensity in the lung scored AUC = 0.921 ± 0.048 in mice and AUC = 0.774 (CI95% 0.677-0.859) in patients. The best radiomic model based on three radiomic features scored AUC = 0.994 ± 0.013 in mice and validated with AUC = 0.832 (CI95% 0.745-0.907) in patients. However, reoptimization of the model weights in the patient cohort allowed to increase the model's performance to AUC = 0.912 ± 0.058.
CONCLUSION
Radiomic signatures of experimental ILD derived from microCT scans translated to HRCT of humans with SSc-ILD. We showed that the experimental model of BLM-induced ILD is a promising system to test radiomic models for later application and validation in human cohorts
An ESTRO-ACROP guideline on quality assurance and medical physics commissioning of online MRI guided radiotherapy systems based on a consensus expert opinion.
OBJECTIVE: The goal of this consensus expert opinion was to define quality assurance (QA) tests for online magnetic resonance image (MRI) guided radiotherapy (oMRgRT) systems and to define the important medical physics aspects for installation and commissioning of an oMRgRT system. MATERIALS AND METHODS: Ten medical physicists and two radiation oncologists experienced in oMRgRT participated in the survey. In the first round of the consensus expert opinion, ideas on QA and commissioning were collected. Only tests and aspects different from commissioning of a CT guided radiotherapy (RT) system were considered. In the following two rounds all twelve participants voted on the importance of the QA tests, their recommended frequency and their suitability for the two oMRgRT systems approved for clinical use as well as on the importance of the aspects to consider during medical physics commissioning. RESULTS: Twenty-four QA tests were identified which are potentially important during commissioning and routine QA on oMRgRT systems compared to online CT guided RT systems. An additional eleven tasks and aspects related to construction, workflow development and training were collected. Consensus was found for most tests on their importance, their recommended frequency and their suitability for the two approved systems. In addition, eight aspects mostly related to the definition of workflows were also found to be important during commissioning. CONCLUSIONS: A program for QA and commissioning of oMRgRT systems was developed to support medical physicists to prepare for safe handling of such systems
Enabling ultra-high dose rate electron beams at a clinical linear accelerator for isocentric treatments
BACKGROUND AND PURPOSE
Radiotherapy delivery with ultra-high dose rates (UHDR) has consistently produced normal tissue sparing while maintaining efficacy for tumour control in preclinical studies, known as the FLASH effect. Modified clinical electron linacs have been used for pre-clinical studies at reduced source-surface distance (SSD) and novel intra-operative devices are becoming available. In this context, we modified a clinical linac to deliver 16 MeV UHDR electron beams with an isocentric setup.
MATERIALS AND METHODS
The first Varian TrueBeam (SN 1001) was clinically operative between 2009-2022, it was then decommissioned and converted into a research platform. The 18 MeV electron beam was converted into the experimental 16 MeV UHDR. Modifications were performed by Varian and included a software patch, thinner scattering foil and beam tuning. The dose rate, beam characteristics and reproducibility were measured with electron applicators at SSD = 100 cm.
RESULTS
The dose per pulse at isocenter was up to 1.28 Gy/pulse, corresponding to average and instantaneous dose rates up to 256 Gy/s and 3⋅10 Gy/s, respectively. Beam characteristics were equivalent between 16 MeV UHDR and conventional for field sizes up to 10x10cm and an overall beam reproducibility within ± 2.5% was measured.
CONCLUSIONS
We report on the first technical conversion of a Varian TrueBeam to produce 16 MeV UHDR electron beams. This research platform will allow isocenter experiments and deliveries with conventional setups up to field sizes of 10x10 cm within a hospital environment, reducing the gap between preclinical and clinical electron FLASH investigations
PET/CT radiomics for prediction of hyperprogression in metastatic melanoma patients treated with immune checkpoint inhibitors
PurposeThis study evaluated pretreatment 2[18F]fluoro-2-deoxy-D-glucose (FDG)-PET/CT-based radiomic signatures for prediction of hyperprogression in metastatic melanoma patients treated with immune checkpoint inhibition (ICI).Material and methodFifty-six consecutive metastatic melanoma patients treated with ICI and available imaging were included in the study and 330 metastatic lesions were individually, fully segmented on pre-treatment CT and FDG-PET imaging. Lesion hyperprogression (HPL) was defined as lesion progression according to RECIST 1.1 and doubling of tumor growth rate. Patient hyperprogression (PD-HPD) was defined as progressive disease (PD) according to RECIST 1.1 and presence of at least one HPL. Patient survival was evaluated with Kaplan-Meier curves. Mortality risk of PD-HPD status was assessed by estimation of hazard ratio (HR). Furthermore, we assessed with Fisher test and Mann-Whitney U test if demographic or treatment parameters were different between PD-HPD and the remaining patients. Pre-treatment PET/CT-based radiomic signatures were used to build models predicting HPL at three months after start of treatment. The models were internally validated with nested cross-validation. The performance metric was the area under receiver operating characteristic curve (AUC).ResultsPD-HPD patients constituted 57.1% of all PD patients. PD-HPD was negatively related to patient overall survival with HR=8.52 (95%CI 3.47-20.94). Sixty-nine lesions (20.9%) were identified as progressing at 3 months. Twenty-nine of these lesions were classified as hyperprogressive, thereby showing a HPL rate of 8.8%. CT-based, PET-based, and PET/CT-based models predicting HPL at three months after the start of treatment achieved testing AUC of 0.703 +/- 0.054, 0.516 +/- 0.061, and 0.704 +/- 0.070, respectively. The best performing models relied mostly on CT-based histogram features.ConclusionsFDG-PET/CT-based radiomic signatures yield potential for pretreatment prediction of lesion hyperprogression, which may contribute to reducing the risk of delayed treatment adaptation in metastatic melanoma patients treated with ICI
Improved Survival Prediction by Combining Radiological Imaging and S-100B Levels Into a Multivariate Model in Metastatic Melanoma Patients Treated With Immune Checkpoint Inhibition
Purpose: We explored imaging and blood bio-markers for survival prediction in a cohort of patients with metastatic melanoma treated with immune checkpoint inhibition.
Materials and Methods: 94 consecutive metastatic melanoma patients treated with immune checkpoint inhibition were included into this study. PET/CT imaging was available at baseline (Tp0), 3 months (Tp1) and 6 months (Tp2) after start of immunotherapy. Radiological response at Tp2 was evaluated using iRECIST. Total tumor burden (TB) at each time-point was measured and relative change of TB compared to baseline was calculated. LDH, CRP and S-100B were also analyzed. Cox proportional hazards model and logistic regression were used for survival analysis.
Results: iRECIST at Tp2 was significantly associated with overall survival (OS) with C-index=0.68. TB at baseline was not associated with OS, whereas TB at Tp1 and Tp2 provided similar predictive power with C-index of 0.67 and 0.71, respectively. Appearance of new metastatic lesions during follow-up was an independent prognostic factor (C-index=0.73). Elevated LDH and S-100B ratios at Tp2 were significantly associated with worse OS: C-index=0.73 for LDH and 0.73 for S-100B. Correlation of LDH with TB was weak (r=0.34). A multivariate model including TB change, S-100B, and appearance of new lesions showed the best predictive performance with C-index=0.83.
Conclusion: Our analysis shows only a weak correlation between LDH and TB. Additionally, baseline TB was not a prognostic factor in our cohort. A multivariate model combining early blood and imaging biomarkers achieved the best predictive power with regard to survival, outperforming iRECIST
Unconscious physiological response of healthy volunteers to dynamic respiration-synchronized couch motion
Improving interinstitutional and intertechnology consistency of pulmonary SBRT by dose prescription to the mean internal target volume dose.
Dose, fractionation, normalization and the dose profile inside the target volume vary substantially in pulmonary stereotactic body radiotherapy (SBRT) between different institutions and SBRT technologies. Published planning studies have shown large variations of the mean dose in planning target volume (PTV) and gross tumor volume (GTV) or internal target volume (ITV) when dose prescription is performed to the PTV covering isodose. This planning study investigated whether dose prescription to the mean dose of the ITV improves consistency in pulmonary SBRT dose distributions.
This was a multi-institutional planning study by the German Society of Radiation Oncology (DEGRO) working group Radiosurgery and Stereotactic Radiotherapy. CT images and structures of ITV, PTV and all relevant organs at risk (OAR) for two patients with early stage non-small cell lung cancer (NSCLC) were distributed to all participating institutions. Each institute created a treatment plan with the technique commonly used in the institute for lung SBRT. The specified dose fractionation was 3 × 21.5 Gy normalized to the mean ITV dose. Additional dose objectives for target volumes and OAR were provided.
In all, 52 plans from 25 institutions were included in this analysis: 8 robotic radiosurgery (RRS), 34 intensity-modulated (MOD), and 10 3D-conformal (3D) radiation therapy plans. The distribution of the mean dose in the PTV did not differ significantly between the two patients (median 56.9 Gy vs 56.6 Gy). There was only a small difference between the techniques, with RRS having the lowest mean PTV dose with a median of 55.9 Gy followed by MOD plans with 56.7 Gy and 3D plans with 57.4 Gy having the highest. For the different organs at risk no significant difference between the techniques could be found.
This planning study pointed out that multiparameter dose prescription including normalization on the mean ITV dose in combination with detailed objectives for the PTV and ITV achieve consistent dose distributions for peripheral lung tumors in combination with an ITV concept between different delivery techniques and across institutions
The Multicentre Acute ischemic stroke imaGIng and Clinical data (MAGIC) repository: rationale and blueprint
Purpose: The Multicentre Acute ischemic stroke imaGIng and Clinical data (MAGIC) repository is a collaboration established in 2024 by seven stroke centres in Europe. MAGIC consolidates clinical and radiological data from acute ischemic stroke (AIS) patients who underwent endovascular therapy, intravenous thrombolysis, a combination of both, or conservative management. Participants: All centres ensure accuracy and completeness of the data. Only patients who did not refuse use of their routine data collected during or after their hospital stay are included in the repository. Approvals or waivers are obtained from the responsible ethics committees before data exchange. A formal data transfer agreement (DTA) is signed by all contributing centres. The centres then share their data, and files are stored centrally on a safe server at the University Hospital Zurich. There, patient identifiers are removed and images are algorithmically de-faced. De-identified structured clinical data are connected to the imaging data by a new identifier. Data are made available to participating centres which have entered into a DTA for stroke research projects. Repository setup: Initially, MAGIC is set to comprise initial and first follow-up imaging of 2,500 AIS patients. Clinical data consist of a comprehensive set of patient characteristics and routine prehospital metrics, treatment and laboratory variables. Outlook: Our repository will support research by leveraging the entire range of routinely collected imaging and clinical data. This dataset reflects the current state of practice in stroke patient evaluation and management and will enable researchers to retrospectively study clinically relevant questions outside the scope of randomized controlled clinical trials. New centres are invited to join MAGIC if they meet the requirements outlined here. We aim to reach approximately 10,000 cases by 2026
- …
