3,449 research outputs found
Correlations, fluctuations and stability of a finite-size network of coupled oscillators
The incoherent state of the Kuramoto model of coupled oscillators exhibits
marginal modes in mean field theory. We demonstrate that corrections due to
finite size effects render these modes stable in the subcritical case, i.e.
when the population is not synchronous. This demonstration is facilitated by
the construction of a non-equilibrium statistical field theoretic formulation
of a generic model of coupled oscillators. This theory is consistent with
previous results. In the all-to-all case, the fluctuations in this theory are
due completely to finite size corrections, which can be calculated in an
expansion in 1/N, where N is the number of oscillators. The N -> infinity limit
of this theory is what is traditionally called mean field theory for the
Kuramoto model.Comment: 25 pages (2 column), 12 figures, modifications for resubmissio
Planck-LFI: Design and Performance of the 4 Kelvin Reference Load Unit
The LFI radiometers use a pseudo-correlation design where the signal from the
sky is continuously compared with a stable reference signal, provided by a
cryogenic reference load system. The reference unit is composed by small
pyramidal horns, one for each radiometer, 22 in total, facing small absorbing
targets, made of a commercial resin ECCOSORB CR (TM), cooled to approximately
4.5 K. Horns and targets are separated by a small gap to allow thermal
decoupling. Target and horn design is optimized for each of the LFI bands,
centered at 70, 44 and 30 GHz. Pyramidal horns are either machined inside the
radiometer 20K module or connected via external electro-formed bended
waveguides. The requirement of high stability of the reference signal imposed a
careful design for the radiometric and thermal properties of the loads.
Materials used for the manufacturing have been characterized for thermal, RF
and mechanical properties. We describe in this paper the design and the
performance of the reference system.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in JINST. IOP Publishing Ltd is not responsible for
any errors or omissions in this version of the manuscript or any version
derived from it. The definitive publisher authenticated version is available
online at [10.1088/1748-0221/4/12/T12006]. 14 pages, 34 figure
B polarization of the CMB from Faraday rotation
We study the effect of Faraday rotation due to a homogeneous magnetic field
on the polarization of the cosmic microwave background (CMB). Scalar
fluctuations give rise only to parity-even E-type polarization of the CMB.
However in the presence of a magnetic field, a non-vanishing parity-odd B-type
polarization component is produced through Faraday rotation. We derive the
exact solution for the E and B modes generated by scalar perturbations
including the Faraday rotation effect of a uniform magnetic field, and evaluate
their cross-correlations with temperature anisotropies. We compute the angular
autocorrelation function of the B-modes in the limit that the Faraday rotation
is small. We find that primordial magnetic fields of present strength around
G rotate E-modes into B-modes with amplitude comparable to those
due to the weak gravitational lensing effect at frequencies around
GHz. The strength of B-modes produced by Faraday rotation scales as
. We evaluate also the depolarizing effect of Faraday rotation upon
the cross correlation between temperature anisotropy and E-type polarization.Comment: 11 pages, 4 figures. Minor changes to match the published versio
Evaluation of early and late presentation of patients with ocular mucous membrane pemphigoid to two major tertiary referral hospitals in the United Kingdom
PURPOSE: Ocular mucous membrane pemphigoid (OcMMP) is a sight-threatening autoimmune disease in which referral to specialists units for further management is a common practise. This study aims to describe referral patterns, disease phenotype and management strategies in patients who present with either early or established disease to two large tertiary care hospitals in the United Kingdom.\ud
\ud
PATIENTS AND METHODS: In all, 54 consecutive patients with a documented history of OcMMP were followed for 24 months. Two groups were defined: (i) early-onset disease (EOD:<3 years, n=26, 51 eyes) and (ii) established disease (EstD:>5 years, n=24, 48 eyes). Data were captured at first clinic visit, and at 12 and 24 months follow-up. Information regarding duration, activity and stage of disease, visual acuity (VA), therapeutic strategies and clinical outcome were analysed.\ud
\ud
RESULTS: Patients with EOD were younger and had more severe conjunctival inflammation (76% of inflamed eyes) than the EstD group, who had poorer VA (26.7%=VA<3/60, P<0.01) and more advanced disease. Although 40% of patients were on existing immunosuppression, 48% required initiation or switch to more potent immunotherapy. In all, 28% (14) were referred back to the originating hospitals for continued care. Although inflammation had resolved in 78% (60/77) at 12 months, persistence of inflammation and progression did not differ between the two phenotypes. Importantly, 42% demonstrated disease progression in the absence of clinically detectable inflammation.\ud
\ud
CONCLUSIONS: These data highlight that irrespective of OcMMP phenotype, initiation or escalation of potent immunosuppression is required at tertiary hospitals. Moreover, the conjunctival scarring progresses even when the eye remains clinically quiescent. Early referral to tertiary centres is recommended to optimise immunosuppression and limit long-term ocular damage.\ud
\u
Statistical Properties of Galactic Starlight Polarization
We present a statistical analysis of Galactic interstellar polarization from
the largest compilation available of starlight data. The data comprises ~ 9300
stars of which we have selected ~ 5500 for our analysis. We find a nearly
linear growth of mean polarization degree with extinction. The amplitude of
this correlation shows that interstellar grains are not fully aligned with the
Galactic magnetic field, which can be interpreted as the effect of a large
random component of the field. In agreement with earlier studies of more
limited scope, we estimate the ratio of the uniform to the random
plane-of-the-sky components of the magnetic field to be B_u/B_r = 0.8.
Moreover, a clear correlation exists between polarization degree and
polarization angle what provides evidence that the magnetic field geometry
follows Galactic structures on large-scales. The angular power spectrum C_l of
the starlight polarization degree for Galactic plane data (|b| < 10 deg) is
consistent with a power-law, C_l ~ l^{-1.5} (where l ~ 180 deg/\theta is the
multipole order), for all angular scales \theta > 10 arcmin. An investigation
of sparse and inhomogeneous sampling of the data shows that the starlight data
analyzed traces an underlying polarized continuum that has the same power
spectrum slope, C_l ~ l^{-1.5}. Our findings suggest that starlight data can be
safely used for the modeling of Galactic polarized continuum emission at other
wavelengths.Comment: 31 pages, 11 figures. Minor corrections and some clarifications
included. Matches version accepted for publication by the Astrophysical
Journa
On the Conformal forms of the Robertson-Walker metric
All possible transformations from the Robertson-Walker metric to those
conformal to the Lorentz-Minkowski form are derived. It is demonstrated that
the commonly known family of transformations and associated conformal factors
are not exhaustive and that there exists another relatively less well known
family of transformations with a different conformal factor in the particular
case that K = -1. Simplified conformal factors are derived for the special case
of maximally-symmetric spacetimes. The full set of all possible
cosmologically-compatible conformal forms is presented as a comprehensive
table. A product of the analysis is the determination of the set-theoretical
relationships between the maximally symmetric spacetimes, the Robertson-Walker
spacetimes, and functionally more general spacetimes. The analysis is preceded
by a short historical review of the application of conformal metrics to
Cosmology.Comment: Historical review added. Accepted by J. Math. Phy
A Search for Small-Scale Clumpiness in Dense Cores of Molecular Clouds
We have analyzed HCN(1-0) and CS(2-1) line profiles obtained with high
signal-to-noise ratios toward distinct positions in three selected objects in
order to search for small-scale structure in molecular cloud cores associated
with regions of high-mass star formation. In some cases, ripples were detected
in the line profiles, which could be due to the presence of a large number of
unresolved small clumps in the telescope beam. The number of clumps for regions
with linear scales of ~0.2-0.5 pc is determined using an analytical model and
detailed calculations for a clumpy cloud model; this number varies in the
range: ~2 10^4-3 10^5, depending on the source. The clump densities range from
~3 10^5-10^6 cm^{-3}, and the sizes and volume filling factors of the clumps
are ~(1-3) 10^{-3} pc and ~0.03-0.12. The clumps are surrounded by inter-clump
gas with densities not lower than ~(2-7) 10^4 cm^{-3}. The internal thermal
energy of the gas in the model clumps is much higher than their gravitational
energy. Their mean lifetimes can depend on the inter-clump collisional rates,
and vary in the range ~10^4-10^5 yr. These structures are probably connected
with density fluctuations due to turbulence in high-mass star-forming regions.Comment: 23 pages including 4 figures and 4 table
Atomic Carbon in Galaxies
We present new measurements of the ground state fine-structure line of atomic
carbon at 492 GHz in a variety of nearby external galaxies, ranging from spiral
to irregular, interacting and merging types. In comparison with CO(1-0), the
CI(1-0) intensity stays fairly comparable in the different environments, with
an average value of the ratio of the line integrated areas in Kkm/s of
CI(1-0)/CO(1-0) = 0.2 +/- 0.2. However, some variations can be found within
galaxies, or between galaxies. Relative to CO lines, CI(1-0) is weaker in
galactic nuclei, but stronger in disks, particularly outside star forming
regions. Also, in NGC 891, the CI(1-0) emission follows the dust continuum at
1.3mm extremely well along the full length of the major axis where molecular
gas is more abundant than atomic gas. Atomic carbon therefore appears to be a
good tracer of molecular gas in external galaxies, possibly more reliable than
CO. Atomic carbon can contribute significantly to the thermal budget of
interstellar gas. Cooling due to C and CO amounts typically to 2 x 10^{-5} of
the FIR continuum or 5% of the CII line. However, C and CO cooling reaches 30%
of the gas total, in Ultra Luminous InfraRed Galaxies, where CII is abnormally
faint. Together with CII/FIR, the emissivity ratio CI(1-0)/FIR can be used as a
measure of the non-ionizing UV radiation field in galaxies.Comment: 26 pages, 8 figure
A cryogenic waveplate rotator for polarimetry at mm and sub-mm wavelengths
Mm and sub-mm waves polarimetry is the new frontier of research in Cosmic
Microwave Background and Interstellar Dust studies. Polarimeters working in the
IR to MM range need to be operated at cryogenic temperatures, to limit the
systematic effects related to the emission of the polarization analyzer. In
this paper we study the effect of the temperature of the different components
of a waveplate polarimeter, and describe a system able to rotate, in a
completely automated way, a birefringent crystal at 4K. We simulate the main
systematic effects related to the temperature and non-ideality of the optical
components in a Stokes polarimeter. To limit these effects, a cryogenic
implementation of the polarimeter is mandatory. In our system, the rotation
produced by a step motor, running at room temperature, is transmitted down to
cryogenic temperatures by means of a long shaft and gears running on custom
cryogenic bearings. Our system is able to rotate, in a completely automated
way, a birefringent crystal at 4K, dissipating only a few mW in the cold
environment. A readout system based on optical fibers allows to control the
rotation of the crystal to better than 0.1{\deg}. This device fulfills the
stringent requirements for operation in cryogenic space experiments, like the
forthcoming PILOT, BOOMERanG and LSPE.Comment: Submitted to Astronomy and Astrophysics. v1: 10 pages, 8 figures. v2:
corrected labels for the bibliographic references (no changes in the
bibliography). v3: revised version. 9 pages, 7 figures. Added a new figure.
Updated with a more realistic simulation for the interstellar dust and with
the latest cryogenic test
- …
