2,985 research outputs found

    Broadening of H2_2O rotational lines by collision with He atoms at low temperature

    Get PDF
    We report pressure broadening coefficients for the 21 electric-dipole transitions between the eight lowest rotational levels of ortho-H2_2O and para-H2_2O molecules by collisions with He at temperatures from 20 to 120 K. These coefficients are derived from recently published experimental state-to-state rate coefficients for H2_2O:He inelastic collisions, plus an elastic contribution from close coupling calculations. The resulting coefficients are compared to the available experimental data. Mostly due to the elastic contribution, the pressure broadening coefficients differ much from line to line, and increase markedly at low temperature. The present results are meant as a guide for future experiments and astrophysical observations.Comment: 2 figures, 2 table

    How different Fermi surface maps emerge in photoemission from Bi2212

    Full text link
    We report angle-resolved photoemission spectra (ARPES) from the Fermi energy (EFE_F) over a large area of the (kx,kyk_x,k_y) plane using 21.2 eV and 32 eV photons in two distinct polarizations from an optimally doped single crystal of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (Bi2212), together with extensive first-principles simulations of the ARPES intensities. The results display a wide-ranging level of accord between theory and experiment and clarify how myriad Fermi surface (FS) maps emerge in ARPES under various experimental conditions. The energy and polarization dependences of the ARPES matrix element help disentangle primary contributions to the spectrum due to the pristine lattice from those arising from modulations of the underlying tetragonal symmetry and provide a route for separating closely placed FS sheets in low dimensional materials.Comment: submitted to PR

    First direct observation of a nearly ideal graphene band structure

    Get PDF
    Angle-resolved photoemission and X-ray diffraction experiments show that multilayer epitaxial graphene grown on the SiC(000-1) surface is a new form of carbon that is composed of effectively isolated graphene sheets. The unique rotational stacking of these films cause adjacent graphene layers to electronically decouple leading to a set of nearly independent linearly dispersing bands (Dirac cones) at the graphene K-point. Each cone corresponds to an individual macro-scale graphene sheet in a multilayer stack where AB-stacked sheets can be considered as low density faults.Comment: 5 pages, 4 figure

    New electronic orderings observed in cobaltates under the influence of misfit periodicities

    Full text link
    We study with ARPES the electronic structure of CoO2 slabs, stacked with rock-salt (RS) layers exhibiting a different (misfit) periodicity. Fermi Surfaces (FS) in phases with different doping and/or periodicities reveal the influence of the RS potential on the electronic structure. We show that these RS potentials are well ordered, even in incommensurate phases, where STM images reveal broad stripes with width as large as 80\AA. The anomalous evolution of the FS area at low dopings is consistent with the localization of a fraction of the electrons. We propose that this is a new form of electronic ordering, induced by the potential of the stacked layers (RS or Na in NaxCoO2) when the FS becomes smaller than the Brillouin Zone of the stacked structure
    corecore