58 research outputs found
Heterogeneity in susceptibility dictates the order of epidemiological models
The fundamental models of epidemiology describe the progression of an
infectious disease through a population using compartmentalized differential
equations, but do not incorporate population-level heterogeneity in infection
susceptibility. We show that variation strongly influences the rate of
infection, while the infection process simultaneously sculpts the
susceptibility distribution. These joint dynamics influence the force of
infection and are, in turn, influenced by the shape of the initial variability.
Intriguingly, we find that certain susceptibility distributions (the
exponential and the gamma) are unchanged through the course of the outbreak,
and lead naturally to power-law behavior in the force of infection; other
distributions often tend towards these "eigen-distributions" through the
process of contagion. The power-law behavior fundamentally alters predictions
of the long-term infection rate, and suggests that first-order epidemic models
that are parameterized in the exponential-like phase may systematically and
significantly over-estimate the final severity of the outbreak
Molecular dynamics simulations of ternary PtxPdyAuz fuel cell nanocatalyst growth
International audienceMolecular dynamics simulation of PEMFC cathodes based on ternary Pt70Pd15Au15 and Pt50Pd25Au25 nanocatalysts dispersed on carbon indicate systematic Au segregation from the particle bulk to the surface, leading to an Au layer coating the cluster surface and to the spontaneous formation of a Pt@Pd@Au core-shell structure. For Au content below 25at%, surface Ptx Pdy active sites are available for efficient oxygen reduction reaction, in agreement with DFT calculations and experimental data. Simulations of direct core@shell system prepared in conditions mimicking those of plasma sputtering deposition pointed out an increase of the number of accessible PtxPd y surface active sites. Core-shell nanocatalyst morphology changes occur due to impinging Pt kinetic energy confinement and dissipation
Calculation of quantum tunneling for a spatially extended defect: The dislocation kink in copper has a low effective mass
Communication: The influence of CO<sub>2</sub> poisoning on overvoltages and discharge capacity in non-aqueous Li-Air batteries
The atomic structure of protons and hydrides in Sm1.92Ca0.08Sn2O7-δ pyrochlore from DFT calculations and FTIR spectroscopy
A combined density functional theory and Fourier transform infrared spectroscopy study of the structure and specific site preference of protons and hydrides in the pyrochlore Sm1.92Ca0.08Sn2O7-delta is presented. Two protonic sites of particular high stability are identified, both located on O(1) oxygen atoms closely associated with a Ca dopant. Further, the unexpected presence of Ho hydride defects in undoped, oxygen deficient Sm2Sn2O7 is reported. Finally, the stretching frequencies and relative intensities for these and other sites are calculated. The main features of the Fourier transform infrared spectra are hereby resolved. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737786
Comparative Methods for Gene Structure Prediction in Homologous Sequences
The increasing number of sequenced genomes motivates the use of evolutionary patterns to detect genes. We present a series of comparative methods for gene finding in homologous prokaryotic or eukaryotic sequences. Based on a model of legal genes and a similarity measure between genes, we find the pair of legal genes of maximum similarity. We develop methods based on genes models and alignment based similarity measures of increasing complexity, which take into account many details of real gene structures, e.g. the similarity of the proteins encoded by the exons. When using a similarity measure based on an exiting alignment, the methods run in linear time. When integrating the alignment and prediction process which allows for more fine grained similarity measures, the methods run in quadratic time. We evaluate the methods in a series of experiments on synthetic and real sequence data, which show that all methods are competitive but that taking the similarity of the encoded proteins into account really boost the performance
Dislocation Kinks in Copper: Widths, Barriers, Effective Masses, and Quantum Tunneling
We calculate the widths, migration barriers, effective masses, and quantum
tunneling rates of kinks and jogs in extended screw dislocations in copper,
using an effective medium theory interatomic potential. The energy barriers and
effective masses for moving a unit jog one lattice constant are close to
typical atomic energies and masses: tunneling will be rare. The energy barriers
and effective masses for the motion of kinks are unexpectedly small due to the
spreading of the kinks over a large number of atoms. The effective masses of
the kinks are so small that quantum fluctuations will be important. We discuss
implications for quantum creep, kink--based tunneling centers, and Kondo
resonances
Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project
Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project
The dissociation of molecules, even the most simple hydrogen molecule, cannot be described accurately within density functional theory because none of the currently available functionals accounts for strong on-site correlation. This problem led to a discussion of properties that the local Kohn-Sham potential has to satisfy in order to correctly describe strongly correlated systems. We derive an analytic expression for the nontrivial form of the Kohn-Sham potential in between the two fragments for the dissociation of a single bond. We show that the numerical calculations for a one-dimensional two-electron model system indeed approach and reach this limit. It is shown that the functional form of the potential is universal, i.e., independent of the details of the two fragments.We acknowledge funding by the Spanish MEC (Grant No. FIS2007-65702-C02-01), “Grupos Consolidados UPV/EHU del Gobierno Vasco” (Grant No. IT-319-07), and the European Community through e-I3 ETSF project (Grant Agreement No. 211956).Peer reviewe
Role of Li<sub>2</sub>O<sub>2</sub>@Li<sub>2</sub>CO<sub>3</sub> Interfaces on Charge Transport in Nonaqueous Li−Air Batteries
- …
