1,108 research outputs found
Gill transcriptome response to changes in environmental calcium in the green spotted puffer fish
Abstract Background Calcium ion is tightly regulated in body fluids and for euryhaline fish, which are exposed to rapid changes in environmental [Ca2+], homeostasis is especially challenging. The gill is the main organ of active calcium uptake and therefore plays a crucial role in the maintenance of calcium ion homeostasis. To study the molecular basis of the short-term responses to changing calcium availability, the whole gill transcriptome obtained by Super Serial Analysis of Gene Expression (SuperSAGE) of the euryhaline teleost green spotted puffer fish, Tetraodon nigroviridis, exposed to water with altered [Ca2+] was analysed. Results Transfer of T. nigroviridis from 10 ppt water salinity containing 2.9 mM Ca2+ to high (10 mM Ca2+ ) and low (0.01 mM Ca2+) calcium water of similar salinity for 2-12 h resulted in 1,339 differentially expressed SuperSAGE tags (26-bp transcript identifiers) in gills. Of these 869 tags (65%) were mapped to T. nigroviridis cDNAs or genomic DNA and 497 (57%) were assigned to known proteins. Thirteen percent of the genes matched multiple tags indicating alternative RNA transcripts. The main enriched gene ontology groups belong to Ca2+ signaling/homeostasis but also muscle contraction, cytoskeleton, energy production/homeostasis and tissue remodeling. K-means clustering identified co-expressed transcripts with distinct patterns in response to water [Ca2+] and exposure time. Conclusions The generated transcript expression patterns provide a framework of novel water calcium-responsive genes in the gill during the initial response after transfer to different [Ca2+]. This molecular response entails initial perception of alterations, activation of signaling networks and effectors and suggests active remodeling of cytoskeletal proteins during the initial acclimation process. Genes related to energy production and energy homeostasis are also up-regulated, probably reflecting the increased energetic needs of the acclimation response. This study is the first genome-wide transcriptome analysis of fish gills and is an important resource for future research on the short-term mechanisms involved in the gill acclimation responses to environmental Ca2+ changes and osmoregulation.Peer Reviewe
Theory of Orbital Ordering, Fluctuation and Resonant X-ray Scattering in Manganites
A theory of resonant x-ray scattering in perovskite manganites is developed
by applying the group theory to the correlation functions of the pseudospin
operators for the orbital degree of freedom. It is shown that static and
dynamical informations of the orbital state are directly obtained from the
elastic, diffuse and inelastic scatterings due to the tensor character of the
scattering factor. We propose that the interaction and its anisotropy between
orbitals are directly identified by the intensity contour of the diffuse
scattering in the momentum space.Comment: 4 pages, 1 figur
Sharper and Simpler Nonlinear Interpolants for Program Verification
Interpolation of jointly infeasible predicates plays important roles in
various program verification techniques such as invariant synthesis and CEGAR.
Intrigued by the recent result by Dai et al.\ that combines real algebraic
geometry and SDP optimization in synthesis of polynomial interpolants, the
current paper contributes its enhancement that yields sharper and simpler
interpolants. The enhancement is made possible by: theoretical observations in
real algebraic geometry; and our continued fraction-based algorithm that rounds
off (potentially erroneous) numerical solutions of SDP solvers. Experiment
results support our tool's effectiveness; we also demonstrate the benefit of
sharp and simple interpolants in program verification examples
Development of genomic simple sequence repeat markers for yam
Yam (
Dioscorea
spp.) is a major staple crop
widely cultivated for its starchy tubers. To date,
very few marker resources are publicly avail
-
able as tools for genetic and genomic studies of
this economically important crop. In this study,
90 simple sequence repeat (SSR) markers were
developed from an enriched genomic library of
yellow Guinea yam (
D. cayenensis
Lam.). Cross-
amplification revealed that 85 (94.4%) and 51
(56.7%) of these SSRs could be successfully
transferred to the two major cultivated species
of
D. rotundata
Poir. and
D. alata
L., respec
-
tively. Polymorphisms in 30 markers selected
on the basis of reliability and reproducibility of
DNA bands were evaluated using a panel of 12
D. cayenensis
, 48
D. rotundata
, and 48
D. alata
accessions. Accordingly, number of alleles
per locus ranged from 2 to 8 in
D. cayenensis
(mean = 3.9), 3 to 30 in
D. rotundata
(mean =
13.9), and 2 to 22 in
D. alata
(mean = 12.1). The
average observed and expected heterozygosi
-
ties were 0.156 and 0.634 (
D. cayenensis
), 0.326
and 0.853 (
D. rotundata
), and 0.247 and 0.836
(
D. alata
), respectively. Clustering based on six
SSRs that were polymorphic in at least four of
the five cultivated
Dioscorea
species studied,
including
D. cayenensis
,
D. rotundata
,
D. alata
,
D. dumetorum
(Kunth) Pax., and
D. bulbifera
L.,
detected groups consistent with the phyloge
-
netic relationships of the species except for
D.
dumetorum
. These new SSR markers are invalu
-
able resources for applications such as genetic
diversity analysis and marker-assisted breedingYam (
Dioscorea
spp.) is a major staple crop
widely cultivated for its starchy tubers. To date,
very few marker resources are publicly avail
-
able as tools for genetic and genomic studies of
this economically important crop. In this study,
90 simple sequence repeat (SSR) markers were
developed from an enriched genomic library of
yellow Guinea yam (
D. cayenensis
Lam.). Cross-
amplification revealed that 85 (94.4%) and 51
(56.7%) of these SSRs could be successfully
transferred to the two major cultivated species
of
D. rotundata
Poir. and
D. alata
L., respec
-
tively. Polymorphisms in 30 markers selected
on the basis of reliability and reproducibility of
DNA bands were evaluated using a panel of 12
D. cayenensis
, 48
D. rotundata
, and 48
D. alata
accessions. Accordingly, number of alleles
per locus ranged from 2 to 8 in
D. cayenensis
(mean = 3.9), 3 to 30 in
D. rotundata
(mean =
13.9), and 2 to 22 in
D. alata
(mean = 12.1). The
average observed and expected heterozygosi
-
ties were 0.156 and 0.634 (
D. cayenensis
), 0.326
and 0.853 (
D. rotundata
), and 0.247 and 0.836
(
D. alata
), respectively. Clustering based on six
SSRs that were polymorphic in at least four of
the five cultivated
Dioscorea
species studied,
including
D. cayenensis
,
D. rotundata
,
D. alata
,
D. dumetorum
(Kunth) Pax., and
D. bulbifera
L.,
detected groups consistent with the phyloge
-
netic relationships of the species except for
D.
dumetorum
. These new SSR markers are invalu
-
able resources for applications such as genetic
diversity analysis and marker-assisted breedin
Resonant Inelastic X-ray Scattering Studies of Elementary Excitations
In the past decade, Resonant Inelastic X-ray Scattering (RIXS) has made
remarkable progress as a spectroscopic technique. This is a direct result of
the availability of high-brilliance synchrotron X-ray radiation sources and of
advanced photon detection instrumentation. The technique's unique capability to
probe elementary excitations in complex materials by measuring their energy-,
momentum-, and polarization-dependence has brought RIXS to the forefront of
experimental photon science. We review both the experimental and theoretical
RIXS investigations of the past decade, focusing on those determining the
low-energy charge, spin, orbital and lattice excitations of solids. We present
the fundamentals of RIXS as an experimental method and then review the
theoretical state of affairs, its recent developments and discuss the different
(approximate) methods to compute the dynamical RIXS response. The last decade's
body of experimental RIXS data and its interpretation is surveyed, with an
emphasis on RIXS studies of correlated electron systems, especially transition
metal compounds. Finally, we discuss the promise that RIXS holds for the near
future, particularly in view of the advent of x-ray laser photon sources.Comment: Review, 67 pages, 44 figure
Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in <i>Pectobacterium spp</i>
In order to kill competing strains of the same or closely related bacterial species, many bacteria produce potent narrow-spectrum protein antibiotics known as bacteriocins. Two sequenced strains of the phytopathogenic bacterium <i>Pectobacterium carotovorum</i> carry genes encoding putative bacteriocins which have seemingly evolved through a recombination event to encode proteins containing an N-terminal domain with extensive similarity to a [2Fe-2S] plant ferredoxin and a C-terminal colicin M-like catalytic domain. In this work, we show that these genes encode active bacteriocins, pectocin M1 and M2, which target strains of <i>Pectobacterium carotovorum</i> and <i>Pectobacterium atrosepticum</i> with increased potency under iron limiting conditions. The activity of pectocin M1 and M2 can be inhibited by the addition of spinach ferredoxin, indicating that the ferredoxin domain of these proteins acts as a receptor binding domain. This effect is not observed with the mammalian ferredoxin protein adrenodoxin, indicating that <i>Pectobacterium spp.</i> carries a specific receptor for plant ferredoxins and that these plant pathogens may acquire iron from the host through the uptake of ferredoxin. In further support of this hypothesis we show that the growth of strains of <i>Pectobacterium carotovorum</i> and <i>atrosepticum</i> that are not sensitive to the cytotoxic effects of pectocin M1 is enhanced in the presence of pectocin M1 and M2 under iron limiting conditions. A similar growth enhancement under iron limiting conditions is observed with spinach ferrodoxin, but not with adrenodoxin. Our data indicate that pectocin M1 and M2 have evolved to parasitise an existing iron uptake pathway by using a ferredoxin-containing receptor binding domain as a Trojan horse to gain entry into susceptible cells
Resonant X-ray Scattering in Manganites - Study of Orbital Degree of Freedom -
Orbital degree of freedom of electrons and its interplay with spin, charge
and lattice degrees of freedom are one of the central issues in colossal
magnetoresistive manganites. The orbital degree of freedom has until recently
remained hidden, since it does not couple directly to most of experimental
probes. Development of synchrotron light sources has changed the situation; by
the resonant x-ray scattering (RXS) technique the orbital ordering has
successfully been observed . In this article, we review progress in the recent
studies of RXS in manganites. We start with a detailed review of the RXS
experiments applied to the orbital ordered manganites and other correlated
electron systems. We derive the scattering cross section of RXS where the
tensor character of the atomic scattering factor (ASF) with respect to the
x-ray polarization is stressed. Microscopic mechanisms of the anisotropic
tensor character of ASF is introduced and numerical results of ASF and the
scattering intensity are presented. The azimuthal angle scan is a unique
experimental method to identify RXS from the orbital degree of freedom. A
theory of the azimuthal angle and polarization dependence of the RXS intensity
is presented. The theoretical results show good agreement with the experiments
in manganites. Apart from the microscopic description of ASF, a theoretical
framework of RXS to relate directly to the 3d orbital is presented. The
scattering cross section is represented by the correlation function of the
pseudo-spin operator for the orbital degree of freedom. A theory is extended to
the resonant inelastic x-ray scattering and methods to observe excitations of
the orbital degree of freedom are proposed.Comment: 47 pages, 24 figures, submitted to Rep. Prog. Phy
Formal verification of side-channel countermeasures using self-composition
Formal verification of cryptographic software implementations poses significant challenges for off-the-shelf tools. This is due to the domain-specific characteristics of the code, involving aggressive optimizations and non-functional security requirements, namely the critical aspect of countermeasures against side-channel attacks. In this paper, we extend previous results supporting the practicality of self-composition proofs of non-interference and generalizations thereof. We tackle the formal verification of high-level security policies adopted in the implementation of the recently proposed NaCl cryptographic library. We formalize these policies and propose a formal verification approach based on self-composition, extending the range of security policies that could previously be handled using this technique. We demonstrate our results by addressing compliance with the NaCl security policies in real-world cryptographic code, highlighting the potential for automation of our techniques.This work was partially supported by project SMART, funded by ENIAC joint Undertaking (GA 120224)
Dynamics of metallic stripes in cuprates
We study the dynamics of metallic vertical stripes in cuprates within the
three-band Hubbard model based on a recently developed time dependent
Gutzwiller approximation. As doping increases the optical conductivity shows
transfer of spectral weight from the charge transfer band towards i) an
incoherent band centered at 1.3eV, {ii} a Drude peak, mainly due to motion
along the stripe, {iii} a low energy collective mode which softens with doping
and merges with ii} at optimum doping in good agreement with experiment. The
softening is related to the quasidegeneracy between Cu centered and O centered
mean-field stripe solutions close to optimal doping.Comment: 4 pages, 5 figures, corrections to Fig.
Spin relaxation in (110) and (001) InAs/GaSb superlattices
We report an enhancement of the electron spin relaxation time (T1) in a (110)
InAs/GaSb superlattice by more than an order of magnitude (25 times) relative
to the corresponding (001) structure. The spin dynamics were measured using
polarization sensitive pump probe techniques and a mid-infrared, subpicosecond
PPLN OPO. Longer T1 times in (110) superlattices are attributed to the
suppression of the native interface asymmetry and bulk inversion asymmetry
contributions to the precessional D'yakonov Perel spin relaxation process.
Calculations using a nonperturbative 14-band nanostructure model give good
agreement with experiment and indicate that possible structural inversion
asymmetry contributions to T1 associated with compositional mixing at the
superlattice interfaces may limit the observed spin lifetime in (110)
superlattices. Our findings have implications for potential spintronics
applications using InAs/GaSb heterostructures.Comment: 4 pages, 2 figure
- …
