266 research outputs found

    A note on the complete rotational invariance of biradial solutions to semilinear elliptic equations

    Full text link
    We investigate symmetry properties of solutions to equations of the form Δu=ax2u+f(x,u) -\Delta u = \frac{a}{|x|^2} u + f(|x|, u) in R^N for N4N \geq 4, with at most critical nonlinearities. By using geometric arguments, we prove that solutions with low Morse index (namely 0 or 1) and which are biradial (i.e. are invariant under the action of a toric group of rotations), are in fact completely radial. A similar result holds for the semilinear Laplace-Beltrami equations on the sphere. Furthermore, we show that the condition on the Morse index is sharp. Finally we apply the result in order to estimate best constants of Sobolev type inequalities with different symmetry constraints

    Action minimizing orbits in the n-body problem with simple choreography constraint

    Full text link
    In 1999 Chenciner and Montgomery found a remarkably simple choreographic motion for the planar 3-body problem (see \cite{CM}). In this solution 3 equal masses travel on a eight shaped planar curve; this orbit is obtained minimizing the action integral on the set of simple planar choreographies with some special symmetry constraints. In this work our aim is to study the problem of nn masses moving in \RR^d under an attractive force generated by a potential of the kind 1/rα1/r^\alpha, α>0\alpha >0, with the only constraint to be a simple choreography: if q1(t),...,qn(t)q_1(t),...,q_n(t) are the nn orbits then we impose the existence of x \in H^1_{2 \pi}(\RR,\RR^d) such that q_i(t)=x(t+(i-1) \tau), i=1,...,n, t \in \RR, where τ=2π/n\tau = 2\pi / n. In this setting, we first prove that for every d,n \in \NN and α>0\alpha>0, the lagrangian action attains its absolute minimum on the planar circle. Next we deal with the problem in a rotating frame and we show a reacher phenomenology: indeed while for some values of the angular velocity minimizers are still circles, for others the minima of the action are not anymore rigid motions.Comment: 24 pages; 4 figures; submitted to Nonlinearit

    Symbolic dynamics for the NN-centre problem at negative energies

    Full text link
    We consider the planar NN-centre problem, with homogeneous potentials of degree -\a<0, \a \in [1,2). We prove the existence of infinitely many collisions-free periodic solutions with negative and small energy, for any distribution of the centres inside a compact set. The proof is based upon topological, variational and geometric arguments. The existence result allows to characterize the associated dynamical system with a symbolic dynamics, where the symbols are the partitions of the NN centres in two non-empty sets

    On the regularization of the collision solutions of the one-center problem with weak forces

    Get PDF
    We study the possible regularization of collision solutions for one centre problems with a weak singularity. In the case of logarithmic singularities, we consider the method of regularization via smoothing of the potential. With this technique, we prove that the extended ow, where collision solutions are replaced with transmission trajectories, is continuous, though not differentiable, with respect to the initial data

    Lines on projective varieties and applications

    Full text link
    The first part of this note contains a review of basic properties of the variety of lines contained in an embedded projective variety and passing through a general point. In particular we provide a detailed proof that for varieties defined by quadratic equations the base locus of the projective second fundamental form at a general point coincides, as a scheme, with the variety of lines. The second part concerns the problem of extending embedded projective manifolds, using the geometry of the variety of lines. Some applications to the case of homogeneous manifolds are included.Comment: 15 pages. One example removed; one remark and some references added; typos correcte

    Regularity of the optimal sets for some spectral functionals

    Get PDF
    In this paper we study the regularity of the optimal sets for the shape optimization problem min{λ1(Ω)+⋯+λk(Ω) : Ω⊂Rd open, |Ω|=1}, where λ1(·) , … , λk(·) denote the eigenvalues of the Dirichlet Laplacian and | · | the d-dimensional Lebesgue measure. We prove that the topological boundary of a minimizer Ωk∗ is composed of a relatively open regular part which is locally a graph of a C∞ function and a closed singular part, which is empty if d&lt; d∗, contains at most a finite number of isolated points if d= d∗ and has Hausdorff dimension smaller than (d- d∗) if d&gt; d∗, where the natural number d∗∈ [ 5 , 7 ] is the smallest dimension at which minimizing one-phase free boundaries admit singularities. To achieve our goal, as an auxiliary result, we shall extend for the first time the known regularity theory for the one-phase free boundary problem to the vector-valued case

    The nonlinear Schrödinger equation ground states on product spaces

    Get PDF
    We study the nature of the nonlinear Schrödinger equation ground states on the product spaces Rn x Mk , where Mk is a compact Riemannian manifold. We prove that for small L2 masses the ground states coincide with the corresponding Rn ground states. We also prove that above a critical mass the ground states have nontrivial Mk dependence. Finally, we address the Cauchy problem issue, which transforms the variational analysis into dynamical stability results

    Hilbert Composition of Multilabelled Events

    Get PDF
    corecore