594 research outputs found
Confronting Neutron Star Cooling Theories with New Observations
With the successful launch of Chandra and XMM/Newton X-ray space missions
combined with the lower-energy band observations, we are in the position where
careful comparison of neutron star cooling theories with observations will make
it possible to distinguish among various competing theories. For instance, the
latest theoretical and observational developments already exclude both nucleon
and kaon direct URCA cooling. In this way we can now have realistic hope for
determining various important properties, such as the composition, degree of
superfluidity, the equation of state and steller radius. These developments
should help us obtain better insight into the properties of dense matter.Comment: 11 pages, 1 figur
Structure and Stability of Si(114)-(2x1)
We describe a recently discovered stable planar surface of silicon, Si(114).
This high-index surface, oriented 19.5 degrees away from (001) toward (111),
undergoes a 2x1 reconstruction. We propose a complete model for the
reconstructed surface based on scanning tunneling microscopy images and
first-principles total-energy calculations. The structure and stability of
Si(114)-(2x1) arises from a balance between surface dangling bond reduction and
surface stress relief, and provides a key to understanding the morphology of a
family of surfaces oriented between (001) and (114).Comment: REVTeX, 4 pages + 3 figures. A preprint with high-resolution figures
is available at http://cst-www.nrl.navy.mil/papers/si114.ps . To be published
in Phys. Rev. Let
Separable Dual Space Gaussian Pseudo-potentials
We present pseudo-potential coefficients for the first two rows of the
periodic table. The pseudo potential is of a novel analytic form, that gives
optimal efficiency in numerical calculations using plane waves as basis set. At
most 7 coefficients are necessary to specify its analytic form. It is separable
and has optimal decay properties in both real and Fourier space. Because of
this property, the application of the nonlocal part of the pseudo-potential to
a wave-function can be done in an efficient way on a grid in real space. Real
space integration is much faster for large systems than ordinary multiplication
in Fourier space since it shows only quadratic scaling with respect to the size
of the system. We systematically verify the high accuracy of these
pseudo-potentials by extensive atomic and molecular test calculations.Comment: 16 pages, 4 postscript figure
Recommended from our members
Transportation Module of Global Change Assessment Model (GCAM): Model Documentation- Version 1.0
This publication provides methodological detail on the new GCAM Transportation Module and contains the following: (1) Descriptions of the new transportation module in GCAM (2) Details about the data sources and methodology adopted to estimate the exogeneous input parameters (3) A summary of the region-specific transportation data for base year (2005) (4) Comparisons of these estimates across regions and modes. (5) Highlights of the uncertainty and shortcomings in our estimates The project broadly encompasses the following four refinements to the transportation sector of GCAM: 1) Increased resolution to include the full spectrum of sub-modes and technologies available in passenger and frieght transport; 2) Refined estimates of input parameters so as to better represent real-world heterogeneity in a way consistent with the latest literature on transportation; 3) Refined estimates of base year (2005) estimates of transportation demand, and disaggregation of IEA energy estimates between modes and size classes; 4) Included the non-motorized modes of walking and biking. The above refinements will not only allow us to develop better estimates of transportation energy demand and emissions, but will also enable modeling of the impact of policies that induce behavioral change and switching to different size classes within a single fuel type. Existing literature on long-term forecasts of transportation energy demand and emissions have focused on the role of advanced low-emission vehicle technologies and low-carbon energy carriers in achieving climate change goals. In GCAM, modeling the impact of policies in the form of varying levels of carbon prices has, to date, been restricted to consumer choices for different modes (e.g. rail versus personal car) and different vehicle technologies (e.g. internal combustion engine vehicles versus electric vehicle). A more detailed representation of the transportation sector – including various size classes of vehicles -- will allow us to estimate the potential for downsizing in the case of private modes (large LDV to midsize or compact LDVs), transfer to public modes (rail and bus) or to non-motorized transport (walking and biking), and adoption of energy efficient “new” modes like the electric-bikes, which have seen rapid adoption in China and other developing countries. This project aims to better represent the heterogeneity and flexibility in the transport system to allow the modeling of a broader range of transport policy intruments including subsidies to public transit, government incentives for alternative technology, transportation fuel taxes, and public investments to increase the speed, service frequency/availability, and comfort of public and nonmotorized modes
A critical assessment of the Self-Interaction Corrected Local Density Functional method and its algorithmic implementation
We calculate the electronic structure of several atoms and small molecules by
direct minimization of the Self-Interaction Corrected Local Density
Approximation (SIC-LDA) functional. To do this we first derive an expression
for the gradient of this functional under the constraint that the orbitals be
orthogonal and show that previously given expressions do not correctly
incorporate this constraint. In our atomic calculations the SIC-LDA yields
total energies, ionization energies and charge densities that are superior to
results obtained with the Local Density Approximation (LDA). However, for
molecules SIC-LDA gives bond lengths and reaction energies that are inferior to
those obtained from LDA. The nonlocal BLYP functional, which we include as a
representative GGA functional, outperforms both LDA and SIC-LDA for all ground
state properties we considered.Comment: 14 pages, 5 figure
Ab initio study of the volume dependence of dynamical and thermodynamical properties of silicon
Motivated by the negative thermal expansion observed for silicon between 20 K
and 120 K, we present first an ab initio study of the volume dependence of
interatomic force constants, phonon frequencies of TA(X) and TA(L) modes, and
of the associated mode Gruneisen parameters. The influence of successive
nearest neighbors shells is analysed. Analytical formulas, taking into account
interactions up to second nearest neighbors, are developped for phonon
frequencies of TA(X) and TA(L) modes and the corresponding mode Gruneisen
parameters. We also analyze the volume and pressure dependence of various
thermodynamic properties (specific heat, bulk modulus, thermal expansion), and
point out the effect of the negative mode Gruneisen parameters of the acoustic
branches on these properties. Finally, we present the evolution of the mean
square atomic displacement and of the atomic temperature factor with the
temperature for different volumes, for which the anomalous effects are even
greater.Comment: 24 pages, Revtex 3.0, 11 figures, accepted for publication in Phys.
Rev.
The Flight Spectral Response of the ACIS Instrument
We discuss the flight calibration of the spectral response of the Advanced
CCD Imaging Spectrometer (ACIS) on-board the Chandra X-ray Observatory (CXO).
The spectral resolution and sensitivity of the ACIS instrument have both been
evolving over the course of the mission. The spectral resolution of the
frontside-illuminated (FI) CCDs changed dramatically in the first month of the
mission due to radiation damage. Since that time, the spectral resolution of
the FI CCDs and the backside-illuminated (BI) CCDs have evolved gradually with
time. We demonstrate the efficacy of charge-transfer inefficiency (CTI)
correction algorithms which recover some of the lost performance. The detection
efficiency of the ACIS instrument has been declining throughout the mission,
presumably due to a layer of contamination building up on the filter and/or
CCDs. We present a characterization of the energy dependence of the excess
absorption and demonstrate software which models the time dependence of the
absorption from energies of 0.4 keV and up. The spectral redistribution
function and the detection efficiency are well-characterized at energies from
1.5 to 8.0 keV. The calibration at energies below 1.5 keV is challenging
because of the lack of strong lines in the calibration source and also because
of the inherent non-linear dependence with energy of the CTI and the absorption
by the contamination layer. We have been using data from celestial sources with
relatively simple spectra to determine the quality of the calibration below 1.5
keV. The analysis of these observations demonstrate that the CTI correction
recovers a significant fraction of the spectral resolution of the FI CCDs and
the models of the time-dependent absorption result in consistent measurements
of the flux at low energies for data from a BI (S3) CCD.Comment: 12 pages, 15 figures, SPIE style file, To appear in "Astronomical
Telescopes and Instrumentation 2002" (SPIE Conference Proceedings), eds. J.E.
Truemper and H.D. Tananbau
Thermodynamic aspects of materials' hardness: prediction of novel superhard high-pressure phases
In the present work we have proposed the method that allows one to easily
estimate hardness and bulk modulus of known or hypothetical solid phases from
the data on Gibbs energy of atomization of the elements and corresponding
covalent radii. It has been shown that hardness and bulk moduli of compounds
strongly correlate with their thermodynamic and structural properties. The
proposed method may be used for a large number of compounds with various types
of chemical bonding and structures; moreover, the temperature dependence of
hardness may be calculated, that has been performed for diamond and cubic boron
nitride. The correctness of this approach has been shown for the recently
synthesized superhard diamond-like BC5. It has been predicted that the
hypothetical forms of B2O3, diamond-like boron, BCx and COx, which could be
synthesized at high pressures and temperatures, should have extreme hardness
Electron localization : band-by-band decomposition, and application to oxides
Using a plane wave pseudopotential approach to density functional theory we
investigate the electron localization length in various oxides. For this
purpose, we first set up a theory of the band-by-band decomposition of this
quantity, more complex than the decomposition of the spontaneous polarization
(a related concept), because of the interband coupling. We show its
interpretation in terms of Wannier functions and clarify the effect of the
pseudopotential approximation. We treat the case of different oxides: BaO,
-PbO, BaTiO and PbTiO. We also investigate the variation of the
localization tensor during the ferroelectric phase transitions of BaTiO as
well as its relationship with the Born effective charges
New Superhard Phases for 3D C60-based Fullerites
We have explored new possible phases of 3D C60-based fullerites using
semiempirical potentials and ab-initio density functional methods. We have
found three closely related structures - two body centered orthorhombic and one
body centered cubic - having 52, 56 and 60 tetracoordinated atoms per molecule.
These 3D polymers result in semiconductors with bulk moduli near 300 GPa, and
shear moduli around 240 GPa, which make them good candidates for new low
density superhard materials.Comment: To be published in Physical Review Letter
- …
