1,154 research outputs found
Kızılelma Viyana, bir ümidin sönüsü
Cataloged from PDF version of article.Le contenu de ce site relève de la législation française sur la propriété intellectuelle et est la propriété exclusive de
l'éditeur.
Les œuvres figurant sur ce site peuvent être consultées et reproduites sur un support papier ou numérique sous
réserve qu'elles soient strictement réservées à un usage soit personnel, soit scientifique ou pédagogique excluant
toute exploitation commerciale. La reproduction devra obligatoirement mentionner l'éditeur, le nom de la revue,
l'auteur et la référence du document.
Toute autre reproduction est interdite sauf accord préalable de l'éditeur, en dehors des cas prévus par la législation
en vigueur en France
Exact solution of Schrodinger equation for modified Kratzer's molecular potential with the position-dependent mass
Exact solutions of Schrodinger equation are obtained for the modified Kratzer
and the corrected Morse potentials with the position-dependent effective mass.
The bound state energy eigenvalues and the corresponding eigenfunctions are
calculated for any angular momentum for target potentials. Various forms of
point canonical transformations are applied. PACS numbers: 03.65.-w; 03.65.Ge;
12.39.Fd Keywords: Morse potential, Kratzer potential, Position-dependent mass,
Point canonical transformation, Effective mass Schr\"{o}dinger equation.Comment: 9 page
Effective Mass Dirac-Morse Problem with any kappa-value
The Dirac-Morse problem are investigated within the framework of an
approximation to the term proportional to in the view of the
position-dependent mass formalism. The energy eigenvalues and corresponding
wave functions are obtained by using the parametric generalization of the
Nikiforov-Uvarov method for any -value. It is also studied the
approximate energy eigenvalues, and corresponding wave functions in the case of
the constant-mass for pseudospin, and spin cases, respectively.Comment: 12 page
Analytical Solutions of Klein-Gordon Equation with Position-Dependent Mass for q-Parameter Poschl-Teller potential
The energy eigenvalues and the corresponding eigenfunctions of the
one-dimensional Klein-Gordon equation with q-parameter Poschl-Teller potential
are analytically obtained within the position-dependent mass formalism. The
parametric generalization of the Nikiforov-Uvarov method is used in the
calculations by choosing a mass distribution.Comment: 10 page
A new approach to the exact solutions of the effective mass Schrodinger equation
Effective mass Schrodinger equation is solved exactly for a given potential.
Nikiforov-Uvarov method is used to obtain energy eigenvalues and the
corresponding wave functions. A free parameter is used in the transformation of
the wave function. The effective mass Schrodinger equation is also solved for
the Morse potential transforming to the constant mass Schr\"{o}dinger equation
for a potential. One can also get solution of the effective mass Schrodinger
equation starting from the constant mass Schrodinger equation.Comment: 14 page
Flow dynamics and mixing processes in hydraulic jump arrays: Implications for channel-lobe transition zones
A detailed field investigation of a saline gravity current in the southwest Black Sea has enabled the first complete analysis of three-dimensional flow structure and dynamics of a series of linked hydraulic jumps in stratified, density-driven, flows. These field observations were collected using an acoustic Doppler current profiler mounted on an autonomous underwater vehicle, and reveal that internal mixing processes in hydraulic jumps, including flow expansion and recirculation, provide a previously unrecognised mechanism for grain-size sorting and segregation in stratified density-driven flows. Field observations suggest a newly identified type of hydraulic jump, that is a stratified low Froude number (< 1.5–2) subaqueous hydraulic jump, with an enhanced ability to transport sediment downstream of the jump, in comparison to hydraulic jumps in other subaerial and submarine flows. These novel field data underpin a new process-based conceptual model of channel lobe transition zones (CLTZs) that explains the scattered offset nature of scours within such settings, the temporal variations in infill and erosion between adjacent scours, how bed shear stresses are maintained across the CLTZ, and why the locus of deposition is so far downstream of the scour zone
Exponential Type Complex and non-Hermitian Potentials in PT-Symmetric Quantum Mechanics
Using the NU method [A.F.Nikiforov, V.B.Uvarov, Special Functions of
Mathematical Physics, Birkhauser,Basel,1988], we investigated the real
eigenvalues of the complex and/or - symmetric, non-Hermitian and the
exponential type systems, such as Poschl-Teller and Morse potentials.Comment: 14 pages, Late
Approximate Solution of the effective mass Klein-Gordon Equation for the Hulthen Potential with any Angular Momentum
The radial part of the effective mass Klein-Gordon equation for the Hulthen
potential is solved by making an approximation to the centrifugal potential.
The Nikiforov-Uvarov method is used in the calculations. Energy spectra and the
corresponding eigenfunctions are computed. Results are also given for the case
of constant mass.Comment: 12 page
Probing a Complex of Cytochromecand Cardiolipin by Magnetic Circular Dichroism Spectroscopy: Implications for the Initial Events in Apoptosis
Oxidation of cardiolipin (CL) by its complex with cytochrome c (cyt c) plays a crucial role in triggering apoptosis. Through a combination of magnetic circular dichroism spectroscopy and potentiometric titrations, we show that both the ferric and ferrous forms of the heme group of a CL:cyt c complex exist as multiple conformers at a physiologically relevant pH of 7.4. For the ferric state, these conformers are His/Lys- and His/OH–-ligated. The ferrous state is predominantly high-spin and, most likely, His/–. Interconversion of the ferric and ferrous conformers is described by a single midpoint potential of -80 ± 9 mV vs SHE. These results suggest that CL oxidation in mitochondria could occur by the reaction of molecular oxygen with the ferrous CL:cyt c complex in addition to the well-described reaction of peroxides with the ferric form
The role of a disulfide bridge in the stability and folding kinetics of Arabidopsis thaliana cytochrome c6A
Cytochrome c 6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c 6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c 6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c 6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c 6A and c 6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c 6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role. © 2011 Elsevier B.V. All rights reserved
- …
