22,792 research outputs found

    The principle of equivalence and projective structure in space-times

    Get PDF
    This paper discusses the extent to which one can determine the space-time metric from a knowledge of a certain subset of the (unparametrised) geodesics of its Levi-Civita connection, that is, from the experimental evidence of the equivalence principle. It is shown that, if the space-time concerned is known to be vacuum, then the Levi-Civita connection is uniquely determined and its associated metric is uniquely determined up to a choice of units of measurement, by the specification of these geodesics. It is further demonstrated that if two space-times share the same unparametrised geodesics and only one is assumed vacuum then their Levi-Civita connections are again equal (and so the other metric is also a vacuum metric) and the first result above is recovered.Comment: 23 pages, submitted to Classical and Quantum Gravit

    Effect of magnetic field on the phase transition in a dusty plasma

    Full text link
    The formation of self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments the pressure and rf power are the main controlling parameters in determining the phase of the system. We have studied the effect of externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment (MDPX) device. Experiments are performed at a fixed pressure and rf power where a crystalline structure is formed within a confining ring. The magnetic field is then increased from 0 to 1.28 T. We report on the breakdown of the crystalline structure with increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe leads to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field.Comment: 9 pages, 5 figure

    Observation of Multiple-Gap Structure in Hidden Order State of URu2Si2 from Optical Conductivity

    Full text link
    We have measured the far infrared reflectance of the heavy fermion compound URu2_2Si2_2 through the phase transition at THO_{HO}=17.5 K dubbed 'hidden order' with light polarized along both the a- and c-axes of the tetragonal structure. The optical conductivity allows the formation of the hidden order gap to be investigated in detail. We find that both the conductivity and the gap structure are anisotropic, and that the c-axis conductivity shows evidence for a double gap structure, with Δ1,c=2.7\Delta_{1,c}=2.7 meV and Δ2,c=1.8\Delta_{2,c}=1.8 meV respectively at 4 K, while the gap seen in the a-axis conductivity has a value of Δa=3.2\Delta_a=3.2 meV at 4 K. The opening of the gaps does not follow the behaviour expected from mean field theory in the vicinity of the transition.Comment: 6 pages, 5 figure

    Coherent states on spheres

    Get PDF
    We describe a family of coherent states and an associated resolution of the identity for a quantum particle whose classical configuration space is the d-dimensional sphere S^d. The coherent states are labeled by points in the associated phase space T*(S^d). These coherent states are NOT of Perelomov type but rather are constructed as the eigenvectors of suitably defined annihilation operators. We describe as well the Segal-Bargmann representation for the system, the associated unitary Segal-Bargmann transform, and a natural inversion formula. Although many of these results are in principle special cases of the results of B. Hall and M. Stenzel, we give here a substantially different description based on ideas of T. Thiemann and of K. Kowalski and J. Rembielinski. All of these results can be generalized to a system whose configuration space is an arbitrary compact symmetric space. We focus on the sphere case in order to be able to carry out the calculations in a self-contained and explicit way.Comment: Revised version. Submitted to J. Mathematical Physic

    Lepton Number Violating Radiative WW Decay in Models with R-parity Violation

    Full text link
    Models with explicit R-parity violation can induce new rare radiative decay modes of the WW boson into single supersymmetric particles which also violate lepton number. We examine the rate and signature for one such decay, Wl~γW\rightarrow \tilde l\gamma, and find that such a mode will be very difficult to observe, due its small branching fraction, even if the lepton number violating coupling in the superpotential is comparable in strength to electromagnetism. This parallels a similar result obtained earlier by Hewett in the case of radiative ZZ decays.Comment: 10 pages, 2 figures(available on request), LaTex, ANL-HEP-PR-92-8

    Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints

    Get PDF
    Two major antifouling biocides used worldwide, Irgarol 1051 and diuron, and their degradation products in Shoreham Harbour and Brighton Marina, UK were studied during 2003-2004. The highest concentrations of Irgarol 1051 were 136 and 102 ng L(-1) in water and 40 and 49 ng g(-1) dry weight in sediments for Shoreham Harbour and Brighton Marina, respectively. As the degradation product of Irgarol 1051, M1 was also widespread, with the highest concentration of 59 ng L(-1) in water and 23 ng g(-1) in sediments in Shoreham Harbour, and 37 ng L(-1) in water and 5.6 ng g(-1) in sediments in Brighton Marina. The target compounds showed enhanced concentrations during the boating season (May-July), when boats were being re-painted (January-February), and where the density of pleasure crafts was high. Overall, the concentration of Irgarol 1051 decreased significantly from late 2000 to early 2004, indicating the effectiveness of controlling its concentrations in the marine environment following restricted use. Diuron was only detected in 14% of water samples, and mostly absent from sediment samples

    Photosynthetic activity and population dynamics of Amoebobacter purpureus in a meromictic saline lake

    Get PDF
    Abstract A dense population of the purple sulfur bacterium Amoebobacter purpureus in the chemocline of meromictic Mahoney Lake (British Columbia, Canada) underwent consistent changes in biomass over a two year study period. The integrated amount of bacteriochlorophyll reached maxima in August and declined markedly during early fall. Bacteriochlorophyll was only weakly correlated with the light intensity and water temperature in the chemocline. In the summer, bacterial photosynthesis was limited by sulfide availability. During this period the intracellular sulfur concentration of A. purpureus cells decreased. A minimum concentration was measured at the top of the bacterial layer in August, when specific photosynthetic rates of A. purpureus indicated that only 14% of the cells were photosynthetically active. With the exception of a time period between August and September, the specific growth rates calculated from CO2 fixation rates of A. purpureus were similar to growth rates calculated from actual biomass changes in the bacterial layer. Between August and September 86% of the A. purpureus biomass disappeared from the chemocline and were deposited on the littoral sediment of Mahoney Lake or degraded within the mixolimnion. This rise of cells to the lake surface was not mediated by an increase in the specific gas vesicle content which remained constant between April and November. The upwelling phenomenon was related to the low sulfur content of A. purpureus cells and a low resistance of surface water layers against vertical mixing by wind
    corecore