657 research outputs found
Linear response strength functions with iterative Arnoldi diagonalization
We report on an implementation of a new method to calculate RPA strength
functions with iterative non-hermitian Arnoldi diagonalization method, which
does not explicitly calculate and store the RPA matrix. We discuss the
treatment of spurious modes, numerical stability, and how the method scales as
the used model space is enlarged. We perform the particle-hole RPA benchmark
calculations for double magic nucleus 132Sn and compare the resulting
electromagnetic strength functions against those obtained within the standard
RPA.Comment: 9 RevTeX pages, 11 figures, submitted to Physical Review
Extension of random-phase approximation preserving energy weighted sum rules: an application to a 3-level Lipkin model
A limitation common to all extensions of random-phase approximation including
only particle-hole configurations is that they violate to some extent the
energy weighted sum rules. Considering one such extension, the improved RPA
(IRPA), already used to study the electronic properties of metallic clusters,
we show how it can be generalized in order to eliminate this drawback. This is
achieved by enlarging the configuration space, including also elementary
excitations corresponding to the annihilation of a particle (hole) and the
creation of another particle (hole) on the correlated ground state. The
approach is tested within a solvable 3-level model.Comment: 2 figure
Neutron-Proton Correlations in an Exactly Solvable Model
We examine isovector and isoscalar neutron-proton correlations in an exactly
solvable model based on the algebra SO(8). We look particularly closely at
Gamow-Teller strength and double beta decay, both to isolate the effects of the
two kinds of pairing and to test two approximation schemes: the renormalized
neutron-proton QRPA (RQRPA) and generalized BCS theory. When isoscalar pairing
correlations become strong enough a phase transition occurs and the dependence
of the Gamow-Teller beta+ strength on isospin changes in a dramatic and
unfamiliar way, actually increasing as neutrons are added to an N=Z core.
Renormalization eliminates the well-known instabilities that plague the QRPA as
the phase transition is approached, but only by unnaturally suppressing the
isoscalar correlations. Generalized BCS theory, on the other hand, reproduces
the Gamow-Teller strength more accurately in the isoscalar phase than in the
usual isovector phase, even though its predictions for energies are equally
good everywhere. It also mixes T=0 and T=1 pairing, but only on the isoscalar
side of the phase transition.Comment: 13 pages + 11 postscript figures, in RevTe
Fully-Renormalized QRPA fulfills Ikeda sum rule exactly
The renormalized quasiparticle-RPA is reformulated for even-even nuclei using
restrictions imposed by the commutativity of the phonon creation operator with
the total particle number operator. This new version, Fully-Renormalized QRPA
(FR-QRPA), is free from the spurious low-energy solutions. Analytical proof is
given that the Ikeda sum rule is fullfiled within the FR-QRPA.Comment: 9 page
Single- and double-beta decay Fermi-transitions in an exactly solvable model
An exactly solvable model suitable for the description of single and
double-beta decay processes of the Fermi-type is introduced. The model is
equivalent to the exact shell-model treatment of protons and neutrons in a
single j-shell. Exact eigenvalues and eigenvectors are compared to those
corresponding to the hamiltonian in the quasiparticle basis (qp) and with the
results of both the standard quasiparticle random phase approximation (QRPA)
and the renormalized one (RQRPA). The role of the scattering term of the
quasiparticle hamiltonian is analyzed. The presence of an exact eigenstate with
zero energy is shown to be related to the collapse of the QRPA. The RQRPA and
the qp solutions do not include this zero-energy eigenvalue in their spectra,
probably due to spurious correlations. The meaning of this result in terms of
symmetries is presented.Comment: 29 pages, 9 figures included in a Postsript file. Submitted to
Physcal Review
Self-Consistent Quasi-Particle RPA for the Description of Superfluid Fermi Systems
Self-Consistent Quasi-Particle RPA (SCQRPA) is for the first time applied to
a more level pairing case. Various filling situations and values for the
coupling constant are considered. Very encouraging results in comparison with
the exact solution of the model are obtained. The nature of the low lying mode
in SCQRPA is identified. The strong reduction of the number fluctuation in
SCQRPA vs BCS is pointed out. The transition from superfluidity to the normal
fluid case is carefully investigated.Comment: 23 pages, 18 figures and 1 table, submitted to Phys. Rev.
Neutrinoless double beta decay within Self-consistent Renormalized Quasiparticle Random Phase Approximation and inclusion of induced nucleon currents
The first, to our knowledge, calculation of neutrinoless double beta decay
(-decay) matrix elements within the self-consistent
renormalised Quasiparticle Random Phase Approximation (SRQRPA) is presented.
The contribution from the momentum-dependent induced nucleon currents to
-decay amplitude is taken into account. A detailed nuclear
structure study includes the discussion of the sensitivity of the obtained
SRQRPA results for -decay of Ge to the parameters of
nuclear Hamiltonian, two-nucleon short-range correlations and the truncation of
the model space. A comparision with the standard and renormalized QRPA is
presented. We have found a considerable reduction of the SRQRPA nuclear matrix
elements, resulting in less stringent limits for the effective neutrino mass.Comment: 13 pages, 3 figures, 1 tabl
Making and observing visual representations during problem solving : An eye tracking study
This paper presents a case study of following visual attention during collaborative geometry problem solving. We first analyse the emergence and spread of the incorrect idea of curved lines as the optimal shortest solution. Then, we examine the different visual representations made for solution ideas and how these are observed by the collaborating peers.Peer reviewe
Dyson Equation Approach to Many-Body Greens Functions and Self-Consistent RPA, First Application to the Hubbard Model
An approach for particle-hole correlation functions, based on the so-called
SCRPA, is developed. This leads to a fully self-consistent RPA-like theory
which satisfies the -sum rule and several other theorems. As a first step, a
simpler self-consistent approach, the renormalized RPA, is solved numerically
in the one-dimensional Hubbard model. The charge and the longitudinal spin
susceptibility, the momentum distribution and several ground state properties
are calculated and compared with the exact results. Especially at half filling,
our approach provides quite promising results and matches the exact behaviour
apart from a general prefactor. The strong coupling limit of our approach can
be described analytically.Comment: 35 pages, 18 Figures, Feynman diagrams as 10 additional eps-files,
revised and enhanced version, accepted in Phys. Rev.
Magnetic Fluffy Dark Matter
We explore extensions of inelastic Dark Matter and Magnetic inelastic Dark
Matter where the WIMP can scatter to a tower of heavier states. We assume a
WIMP mass GeV and a constant splitting between
successive states keV. For the
spin-independent scattering scenario we find that the direct experiments CDMS
and XENON strongly constrain most of the DAMA/LIBRA preferred parameter space,
while for WIMPs that interact with nuclei via their magnetic moment a region of
parameter space corresponding to GeV and keV
is allowed by all the present direct detection constraints.Comment: 16 pages, 6 figures, added comments about magnetic moment form factor
to Sec 3.1.2 and results to Sec 3.2.2, final version to be published in JHE
- …
