600 research outputs found
Detection of the Horizontal Divergent Flow prior to the Solar Flux Emergence
It is widely accepted that solar active regions including sunspots are formed
by the emerging magnetic flux from the deep convection zone. In previous
numerical simulations, we found that the horizontal divergent flow (HDF) occurs
before the flux emergence at the photospheric height. This Paper reports the
HDF detection prior to the flux emergence of NOAA AR 11081, which is located
away from the disk center. We use SDO/HMI data to study the temporal changes of
the Doppler and magnetic patterns from those of the reference quiet Sun. As a
result, the HDF appearance is found to come before the flux emergence by about
100 minutes. Also, the horizontal speed of the HDF during this time gap is
estimated to be 0.6 to 1.5 km s^-1, up to 2.3 km s^-1. The HDF is caused by the
plasma escaping horizontally from the rising magnetic flux. And the interval
between the HDF and the flux emergence may reflect the latency during which the
magnetic flux beneath the solar surface is waiting for the instability onset to
the further emergence. Moreover, SMART Halpha images show that the
chromospheric plages appear about 14 min later, located co-spatial with the
photospheric pores. This indicates that the plages are caused by plasma flowing
down along the magnetic fields that connect the pores at their footpoints. One
importance of observing the HDF may be the possibility to predict the sunspot
appearances that occur in several hours.Comment: 32 pages, 8 figures, 3 tables, accepted for publication in Ap
Numerical Experiments on the Two-step Emergence of Twisted Magnetic Flux Tubes in the Sun
We present the new results of the two-dimensional numerical experiments on
the cross-sectional evolution of a twisted magnetic flux tube rising from the
deeper solar convection zone (-20,000 km) to the corona through the surface.
The initial depth is ten times deeper than most of previous calculations
focusing on the flux emergence from the uppermost convection zone. We find that
the evolution is illustrated by the two-step process described below: the
initial tube rises due to its buoyancy, subject to aerodynamic drag due to the
external flow. Because of the azimuthal component of the magnetic field, the
tube maintains its coherency and does not deform to become a vortex roll pair.
When the flux tube approaches the photosphere and expands sufficiently, the
plasma on the rising tube accumulates to suppress the tube's emergence.
Therefore, the flux decelerates and extends horizontally beneath the surface.
This new finding owes to our large scale simulation calculating simultaneously
the dynamics within the interior as well as above the surface. As the magnetic
pressure gradient increases around the surface, magnetic buoyancy instability
is triggered locally and, as a result, the flux rises further into the solar
corona. We also find that the deceleration occurs at a higher altitude than in
our previous experiment using magnetic flux sheets (Toriumi and Yokoyama). By
conducting parametric studies, we investigate the conditions for the two-step
emergence of the rising flux tube: field strength > 1.5x10^4 G and the twist >
5.0x10^-4 km^-1 at -20,000 km depth.Comment: 42 pages, 13 figures, 2 tables, accepted for publication in ApJ.
High-resolution figures will appear in the published versio
Formation of a Flare-Productive Active Region: Observation and Numerical Simulation of NOAA AR 11158
We present a comparison of the Solar Dynamics Observatory (SDO) analysis of
NOAA Active Region (AR) 11158 and numerical simulations of flux-tube emergence,
aiming to investigate the formation process of this flare-productive AR. First,
we use SDO/Helioseismic and Magnetic Imager (HMI) magnetograms to investigate
the photospheric evolution and Atmospheric Imaging Assembly (AIA) data to
analyze the relevant coronal structures. Key features of this quadrupolar
region are a long sheared polarity inversion line (PIL) in the central
delta-sunspots and a coronal arcade above the PIL. We find that these features
are responsible for the production of intense flares, including an X2.2-class
event. Based on the observations, we then propose two possible models for the
creation of AR 11158 and conduct flux-emergence simulations of the two cases to
reproduce this AR. Case 1 is the emergence of a single flux tube, which is
split into two in the convection zone and emerges at two locations, while Case
2 is the emergence of two isolated but neighboring tubes. We find that, in Case
1, a sheared PIL and a coronal arcade are created in the middle of the region,
which agrees with the AR 11158 observation. However, Case 2 never builds a
clear PIL, which deviates from the observation. Therefore, we conclude that the
flare-productive AR 11158 is, between the two cases, more likely to be created
from a single split emerging flux than from two independent flux bundles.Comment: 21 pages, 10 figures, published in Solar Physics, see
http://link.springer.com/article/10.1007/s11207-014-0502-
Two-step Emergence of the Magnetic Flux Sheet from the Solar Convection Zone
We perform two-dimensional MHD simulations on the solar flux emergence. We
set the initial magnetic flux sheet at z=-20,000 km in the convection zone. The
flux sheet rises through the convective layer due to the Parker instability,
however, decelerates beneath the photosphere because the plasma on the flux
sheet piles up owing to the convectively stable photosphere above. Meanwhile,
the flux sheet becomes locally unstable to the Parker instability within the
photosphere, and the further evolution to the corona occurs (two-step emergence
model). We carry out a parameter survey to investigate the condition for this
two-step model. We find that magnetic fluxes which form active regions are
likely to have undergone the two-step emergence. The condition for the two-step
emergence is 10^21 - 10^22 Mx with 10^4 G at z=-20,000 km in the convection
zone.Comment: 41 pages, 15 figures, 1 table, Accepted for publication in Ap
Cosmological Density Perturbations with a Scale-Dependent Newton's G
We explore possible cosmological consequences of a running Newton's constant
, as suggested by the non-trivial ultraviolet fixed point
scenario in the quantum field-theoretic treatment of Einstein gravity with a
cosmological constant term. In particular we focus here on what possible
effects the scale-dependent coupling might have on large scale cosmological
density perturbations. Starting from a set of manifestly covariant effective
field equations derived earlier, we systematically develop the linear theory of
density perturbations for a non-relativistic, pressure-less fluid. The result
is a modified equation for the matter density contrast, which can be solved and
thus provides an estimate for the growth index parameter in the
presence of a running . We complete our analysis by comparing the fully
relativistic treatment with the corresponding results for the non-relativistic
(Newtonian) case, the latter also with a weakly scale dependent .Comment: 54 pages, 4 figure
The Great Space Weather Event during February 1872 Recorded in East Asia
The study of historical great geomagnetic storms is crucial for assessing the
possible risks to the technological infrastructure of a modern society, caused
by extreme space-weather events. The normal benchmark has been the great
geomagnetic storm of September 1859, the so-called "Carrington Event". However,
there are numerous records of another great geomagnetic storm in February 1872.
This storm, about 12 years after the Carrington Event, resulted in comparable
magnetic disturbances and auroral displays over large areas of the Earth. We
have revisited this great geomagnetic storm in terms of the auroral and sunspot
records in the historical documents from East Asia. In particular, we have
surveyed the auroral records from East Asia and estimated the equatorward
boundary of the auroral oval to be near 24.3 deg invariant latitude (ILAT), on
the basis that the aurora was seen near the zenith at Shanghai (20 deg magnetic
latitude, MLAT). These results confirm that this geomagnetic storm of February
1872 was as extreme as the Carrington Event, at least in terms of the
equatorward motion of the auroral oval. Indeed, our results support the
interpretation of the simultaneous auroral observations made at Bombay (10 deg
MLAT). The East Asian auroral records have indicated extreme brightness,
suggesting unusual precipitation of high-intensity, low-energy electrons during
this geomagnetic storm. We have compared the duration of the East Asian auroral
displays with magnetic observations in Bombay and found that the auroral
displays occurred in the initial phase, main phase, and early recovery phase of
the magnetic storm.Comment: 28 pages, 5 figures, accepted for publication in the Astrophysical
Journal on 31 May 201
Magnetic Properties of Solar Active Regions that Govern Large Solar Flares and Eruptions
Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim to understand the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with GOES levels of >=M5.0 within 45 deg from disk center between May 2010 and April 2016. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory. More than 80% of the 29 ARs are found to exhibit delta-sunspots and at least three ARs violate Hale's polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization show that even X-class events do not require delta-sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2x10^23 Mx, might be able to produce "superflares" with energies of order of 10^34 erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares
Quantum and Thermal Phase Transitions of Halogen-Bridged Binuclear Transition-Metal Complexes
Aiming to settle the controversial observations for halogen-bridged binuclear
transition-metal (MMX) complexes, finite-temperature Hartree-Fock calculations
are performed for a relevant two-band Peierls-Hubbard model. Thermal, as well
as quantum, phase transitions are investigated with particular emphasis on the
competition between electron itinerancy, electron-phonon interaction and
electron-electron correlation. Recently observed distinct thermal behaviors of
two typical MMX compounds Pt_2(CH_3CS_2)_4I and
(NH_4)_4[Pt_2(P_2O_5H_2)_4I]2H_2O are supported and further tuning of their
electronic states is predicted.Comment: 5 pages, 3 figures embedded, to be published in J. Phys. Soc. Jpn.
Vol.70, No.5 (2001
Competing Ground States of the New Class of Halogen-Bridged Metal Complexes
Based on a symmetry argument, we study the ground-state properties of
halogen-bridged binuclear metal chain complexes. We systematically derive
commensurate density-wave solutions from a relevant two-band Peierls-Hubbard
model and numerically draw the the ground-state phase diagram as a function of
electron-electron correlations, electron-phonon interactions, and doping
concentration within the Hartree-Fock approximation. The competition between
two types of charge-density-wave states, which has recently been reported
experimentally, is indeed demonstrated.Comment: 4 pages, 5 figures embedded, to appear in J. Phys. Soc. Jp
The Horizontal Component of Photospheric Plasma Flows During the Emergence of Active Regions on the Sun
The dynamics of horizontal plasma flows during the first hours of the
emergence of active region magnetic flux in the solar photosphere have been
analyzed using SOHO/MDI data. Four active regions emerging near the solar limb
have been considered. It has been found that extended regions of Doppler
velocities with different signs are formed in the first hours of the magnetic
flux emergence in the horizontal velocity field. The flows observed are
directly connected with the emerging magnetic flux; they form at the beginning
of the emergence of active regions and are present for a few hours. The Doppler
velocities of flows observed increase gradually and reach their peak values
4-12 hours after the start of the magnetic flux emergence. The peak values of
the mean (inside the +/-500 m/s isolines) and maximum Doppler velocities are
800-970 m/s and 1410-1700 m/s, respectively. The Doppler velocities observed
substantially exceed the separation velocities of the photospheric magnetic
flux outer boundaries. The asymmetry was detected between velocity structures
of leading and following polarities. Doppler velocity structures located in a
region of leading magnetic polarity are more powerful and exist longer than
those in regions of following polarity. The Doppler velocity asymmetry between
the velocity structures of opposite sign reaches its peak values soon after the
emergence begins and then gradually drops within 7-12 hours. The peak values of
asymmetry for the mean and maximal Doppler velocities reach 240-460 m/s and
710-940 m/s, respectively. An interpretation of the observable flow of
photospheric plasma is given.Comment: 20 pages, 10 figures, 3 tables. The results of article were presented
at the ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102,
P.4.12,
http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf
- …
