11,535 research outputs found
Isospin in Reaction Dynamics. The Case of Dissipative Collisions at Fermi Energies
A key question in the physics of unstable nuclei is the knowledge of the
for asymmetric nuclear matter () away from normal conditions. We
recall that the symmetry energy at low densities has important effects on the
neutron skin structure, while the knowledge in high densities region is crucial
for supernovae dynamics and neutron star properties. The way to probe
such region of the isovector in terrestrial laboratories is through very
dissipative collisions of asymmetric (up to exotic) heavy ions from low to
relativistic energies. A general introduction to the topic is firstly
presented. We pass then to a detailed discussion on the
process as the main dissipative mechanism at the Fermi energies and to the
related isospin dynamics. From Stochastic Mean Field simulations the isospin
effects on all the phases of the reaction dynamics are thoroughly analysed,
from the fast nucleon emission to the mid-rapidity fragment formation up to the
dynamical fission of the residues. Simulations have been performed
with an increasing stiffness of the symmetry term of the .
Some differences have been noticed, especially for the fragment charge
asymmetry. New isospin effects have been revealed from the correlation of
fragment asymmetry with dynamical quantities at the freeze-out time. A series
of isospin sensitive observables to be further measured are finally listed.Comment: 16 pages, 6 figures, Contribution to the 5th Italy-Japan Symposium,
Recent Achievements and Perspectives in Nuclear Physics, Naples Nov.3-7 2004,
World Sci. in press. Latex in WorldSci/proc/styl
Phase transition in a super superspin glass
We here confirm the occurrence of spin glass phase transition and extract
estimates of associated critical exponents of a highly monodisperse and densely
compacted system of bare maghemite nanoparticles. This system has earlier been
found to behave like an archetypal spin glass, with e.g. a sharp transition
from paramagnetic to non-equilibrium behavior, suggesting that this system
undergoes a spin-glass phase transition at a relatively high temperature,
140 K.Comment: 4 pages, 3 figure
Imbalance of p75(NTR)/TrkB protein expression in Huntington's disease: Implication for neuroprotective therapies
Neuroprotective therapies based on brain-derived neurotrophic factor (BDNF) administration have been proposed for Huntington's disease (HD) treatment. However, our group has recently reported reduced levels of TrkB in HD mouse models and HD human brain suggesting that besides a decrease on BDNF levels a reduction of TrkB expression could also contribute to diminished neurotrophic support in HD. BDNF can also bind to p75 neurotrophin receptor (p75(NTR)) modulating TrkB signaling. Therefore, in this study we have analyzed the levels of p75(NTR) in several HD models, as well as in HD human brain. Our data demonstrates a p75(NTR)/TrkB imbalance in the striatum of two different HD mouse models, Hdh(Q111/111) homozygous knockin mice and R6/1 mice that was also manifested in the putamen of HD patients. The imbalance between TrkB and p75(NTR) levels in a HD cellular model did not affect BDNF-mediated TrkB activation of prosurvival pathways but induced activation of apoptotic cascades as demonstrated by increased JNK phosphorylation. Moreover, BDNF failed to protect mutant huntingtin striatal cells transfected with p75(NTR) against NMDA-mediated excitotoxicity, which was associated with decreased Akt phosphorylation. Interestingly, lack of Akt activation following BDNF and NMDA treatment correlated with increased PP1 levels. Accordingly, pharmacological inhibition of PP1 by okadaic acid (OA) prevented mutant huntingtin striatal cell death induced by NMDA and BDNF. Altogether, our findings demonstrate that the p75(NTR)/TrkB imbalance induced by mutant huntingtin in striatal cells associated with the aberrant activity of PP1 disturbs BDNF neuroprotection likely contributing to increasing striatal vulnerability in HD. On the basis of this data we hypothesize that normalization of p75(NTR) and/or TrkB expression or their signaling will improve BDNF neuroprotective therapies in HD. Cell Death and Disease (2013) 4, e595; doi:10.1038/cddis.2013.116; published online 18 April 201
Consideration of the Mechanisms for Tidal Bore Formation in an Idealized Planform Geometry
A tidal bore is a positive wave traveling upstream along the estuary of a river, generated by a relatively rapid rise of the tide, often enhanced by the funneling shape of the estuary. The swell produced by the tide grows and its front steepens as the flooding tide advances inland, promoting the formation of a sharp front wave, i.e., the tidal bore. Because of the many mechanisms and conditions involved in the process, it is difficult to formulate an effective criterion to predict the bore formation. In this preliminary analysis, aimed at bringing out the main processes and parameters that control tidal bore formation, the degrees of freedom of the problem are largely reduced by considering a rectangular channel of constant width with uniform flow, forced downstream by rising the water level at a constant rate. The framework used in this study is extremely simple, yet the problem is still complex and the solution is far from being trivial. From the results of numerical simulations, three distinctive behaviors emerged related to conditions in which a tidal bore forms, a tidal bore does not form, and a weak bore forms; the latter has a weakly steep front and after the bore formed it rapidly vanishes. Based on these behaviors, some criteria to predict the bore formation are proposed and discussed. The more effective criterion, suitably rearranged, is checked against data from real estuaries and the predictions are found to compare favorably with the available data
Collective Flows in a Transport Approach
We introduce a transport approach at fixed shear viscosity to entropy ratio
\etas to study the generation of collective flows in ultra-relativistic
heavy-ion collisions. Transport theory supplies a covariant approach valid also
at large \etas and at intermediate transverse momentum , where
deviations from equilibrium is no longer negligible. Such an approach shows
that at RHIC energies a temperature dependent \etas enhances significantly
the respect to the case of constant \etas. Furthermore if NJL
chiral dynamics is self-consistently implemented we show that it does not
modify the relation between and \etas.Comment: 4 pages, 4 figures, Proceedings of Hot Quarks 2010, 21-26 June 2010
Las Londe Les Maures; to appear in Journal of Physics: Conference Serie
Hadron-quark phase transition in asymmetric matter with dynamical quark masses
The two-Equation of State (EoS) model is used to describe the hadron-quark
phase transition in asymmetric matter formed at high density in heavy-ion
collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL)
effective theory is used to investigate the influence of dynamical quark mass
effects on the phase transition. At variance to the MIT-Bag results, with fixed
current quark masses, the main important effect of the chiral dynamics is the
appearance of an End-Point for the coexistence zone. We show that a first order
hadron-quark phase transition may take place in the region T=(50-80)MeV and
\rho_B=(2-4)\rho_0, which is possible to be probed in the new planned
facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From isospin
properties of the mixed phase somepossible signals are suggested. The
importance of chiral symmetry and dynamical quark mass on the hadron-quark
phase transition is stressed. The difficulty of an exact location of
Critical-End-Point comes from its appearance in a region of competition between
chiral symmetry breaking and confinement, where our knowledge of effective QCD
theories is still rather uncertain.Comment: 13 pages, 16 figures (revtex
- …
