2,213 research outputs found
Discovering Class-Specific Pixels for Weakly-Supervised Semantic Segmentation
We propose an approach to discover class-specific pixels for the
weakly-supervised semantic segmentation task. We show that properly combining
saliency and attention maps allows us to obtain reliable cues capable of
significantly boosting the performance. First, we propose a simple yet powerful
hierarchical approach to discover the class-agnostic salient regions, obtained
using a salient object detector, which otherwise would be ignored. Second, we
use fully convolutional attention maps to reliably localize the class-specific
regions in a given image. We combine these two cues to discover class-specific
pixels which are then used as an approximate ground truth for training a CNN.
While solving the weakly supervised semantic segmentation task, we ensure that
the image-level classification task is also solved in order to enforce the CNN
to assign at least one pixel to each object present in the image.
Experimentally, on the PASCAL VOC12 val and test sets, we obtain the mIoU of
60.8% and 61.9%, achieving the performance gains of 5.1% and 5.2% compared to
the published state-of-the-art results. The code is made publicly available
Pixelwise Instance Segmentation with a Dynamically Instantiated Network
Semantic segmentation and object detection research have recently achieved
rapid progress. However, the former task has no notion of different instances
of the same object, and the latter operates at a coarse, bounding-box level. We
propose an Instance Segmentation system that produces a segmentation map where
each pixel is assigned an object class and instance identity label. Most
approaches adapt object detectors to produce segments instead of boxes. In
contrast, our method is based on an initial semantic segmentation module, which
feeds into an instance subnetwork. This subnetwork uses the initial
category-level segmentation, along with cues from the output of an object
detector, within an end-to-end CRF to predict instances. This part of our model
is dynamically instantiated to produce a variable number of instances per
image. Our end-to-end approach requires no post-processing and considers the
image holistically, instead of processing independent proposals. Therefore,
unlike some related work, a pixel cannot belong to multiple instances.
Furthermore, far more precise segmentations are achieved, as shown by our
state-of-the-art results (particularly at high IoU thresholds) on the Pascal
VOC and Cityscapes datasets.Comment: CVPR 201
Alpha MAML: Adaptive Model-Agnostic Meta-Learning
Model-agnostic meta-learning (MAML) is a meta-learning technique to train a
model on a multitude of learning tasks in a way that primes the model for
few-shot learning of new tasks. The MAML algorithm performs well on few-shot
learning problems in classification, regression, and fine-tuning of policy
gradients in reinforcement learning, but comes with the need for costly
hyperparameter tuning for training stability. We address this shortcoming by
introducing an extension to MAML, called Alpha MAML, to incorporate an online
hyperparameter adaptation scheme that eliminates the need to tune meta-learning
and learning rates. Our results with the Omniglot database demonstrate a
substantial reduction in the need to tune MAML training hyperparameters and
improvement to training stability with less sensitivity to hyperparameter
choice.Comment: 6th ICML Workshop on Automated Machine Learning (2019
Deep Virtual Networks for Memory Efficient Inference of Multiple Tasks
Deep networks consume a large amount of memory by their nature. A natural
question arises can we reduce that memory requirement whilst maintaining
performance. In particular, in this work we address the problem of memory
efficient learning for multiple tasks. To this end, we propose a novel network
architecture producing multiple networks of different configurations, termed
deep virtual networks (DVNs), for different tasks. Each DVN is specialized for
a single task and structured hierarchically. The hierarchical structure, which
contains multiple levels of hierarchy corresponding to different numbers of
parameters, enables multiple inference for different memory budgets. The
building block of a deep virtual network is based on a disjoint collection of
parameters of a network, which we call a unit. The lowest level of hierarchy in
a deep virtual network is a unit, and higher levels of hierarchy contain lower
levels' units and other additional units. Given a budget on the number of
parameters, a different level of a deep virtual network can be chosen to
perform the task. A unit can be shared by different DVNs, allowing multiple
DVNs in a single network. In addition, shared units provide assistance to the
target task with additional knowledge learned from another tasks. This
cooperative configuration of DVNs makes it possible to handle different tasks
in a memory-aware manner. Our experiments show that the proposed method
outperforms existing approaches for multiple tasks. Notably, ours is more
efficient than others as it allows memory-aware inference for all tasks.Comment: CVPR 201
Adaptive Neural Compilation
This paper proposes an adaptive neural-compilation framework to address the
problem of efficient program learning. Traditional code optimisation strategies
used in compilers are based on applying pre-specified set of transformations
that make the code faster to execute without changing its semantics. In
contrast, our work involves adapting programs to make them more efficient while
considering correctness only on a target input distribution. Our approach is
inspired by the recent works on differentiable representations of programs. We
show that it is possible to compile programs written in a low-level language to
a differentiable representation. We also show how programs in this
representation can be optimised to make them efficient on a target distribution
of inputs. Experimental results demonstrate that our approach enables learning
specifically-tuned algorithms for given data distributions with a high success
rate.Comment: Submitted to NIPS 2016, code and supplementary materials will be
available on author's pag
- …
