29 research outputs found
Loss of mitochondrial ClpP, Lonp1, and Tfam triggers transcriptional induction of Rnf213, a susceptibility factor for moyamoya disease
Projekt DEAL; Goethe University Medical Facult
Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation
BACKGROUND: PINK1 deficiency causes the autosomal recessive PARK6 variant of Parkinson's disease. PINK1 activates ubiquitin by phosphorylation and cooperates with the downstream ubiquitin ligase PARKIN, to exert quality control and control autophagic degradation of mitochondria and of misfolded proteins in all cell types. METHODS: Global transcriptome profiling of mouse brain and neuron cultures were assessed in protein-protein interaction diagrams and by pathway enrichment algorithms. Validation by quantitative reverse transcriptase polymerase chain reaction and immunoblots was performed, including human neuroblastoma cells and patient primary skin fibroblasts. RESULTS: In a first approach, we documented Pink1-deleted mice across the lifespan regarding brain mRNAs. The expression changes were always subtle, consistently affecting "intracellular membrane-bounded organelles". Significant anomalies involved about 250 factors at age 6 weeks, 1300 at 6 months, and more than 3500 at age 18 months in the cerebellar tissue, including Srsf10, Ube3a, Mapk8, Creb3, and Nfkbia. Initially, mildly significant pathway enrichment for the spliceosome was apparent. Later, highly significant networks of ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing occurred. Finally, an enrichment of neuroinflammation factors appeared, together with profiles of bacterial invasion and MAPK signaling changes-while mitophagy had minor significance. Immunohistochemistry showed pronounced cellular response of Iba1-positive microglia and GFAP-positive astrocytes; brain lipidomics observed increases of ceramides as neuroinflammatory signs at old age. In a second approach, we assessed PINK1 deficiency in the presence of a stressor. Marked dysregulations of microbial defense factors Ifit3 and Rsad2 were consistently observed upon five analyses: (1) Pink1 -/- primary neurons in the first weeks after brain dissociation, (2) aged Pink1 -/- midbrain with transgenic A53T-alpha-synuclein overexpression, (3) human neuroblastoma cells with PINK1-knockdown and murine Pink1 -/- embryonal fibroblasts undergoing acute starvation, (4) triggering mitophagy in these cells with trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP), and (5) subjecting them to pathogenic RNA-analogue poly(I:C). The stress regulation of MAVS, RSAD2, DDX58, IFIT3, IFIT1, and LRRK2 was PINK1 dependent. Dysregulation of some innate immunity genes was also found in skin fibroblast cells from PARK6 patients. CONCLUSIONS: Thus, an individual biomarker with expression correlating to progression was not identified. Instead, more advanced disease stages involved additional pathways. Hence, our results identify PINK1 deficiency as an early modulator of innate immunity in neurons, which precedes late stages of neuroinflammation during alpha-synuclein spreading
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particles’
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
Progression of pathology in PINK1-deficient mouse brain from splicing via ubiquitination, ER stress, and mitophagy changes to neuroinflammation
The splicing factor hnRNP M is a critical regulator of innate immune gene expression in macrophages
ABSTRACTWhile transcriptional control mechanisms of innate immune gene expression are well characterized, almost nothing is known about how pre-mRNA splicing decisions influence, or are influenced by, macrophage activation. Here, we demonstrate that the splicing factor hnRNP M is a critical repressor of innate immune gene expression and that its function is regulated by pathogen sensing cascades. Loss of hnRNP M leads to hyperinduction of a unique regulon of inflammatory and antimicrobial genes, including IL6, Mx1, and Gbp5, following a variety of innate immune stimuli. While mutating specific serines on hnRNP M had little effect on its ability to control pre-mRNA splicing or transcript levels of “housekeeping” genes in resting macrophages, it greatly impacted the protein’s ability to dampen induction of specific innate immune transcripts following activation of pathogen sensing cascades. These data reveal a previously unappreciated role for pattern recognition receptor signaling in controlling splicing factor phosphorylation and establish pre-mRNA splicing as a critical regulatory node in defining innate immune outcomes.</jats:p
Loss of Mitochondrial Protease CLPP Activates Type I IFN Responses through the Mitochondrial DNA–cGAS–STING Signaling Axis
Abstract
Caseinolytic mitochondrial matrix peptidase proteolytic subunit (CLPP) is a serine protease that degrades damaged or misfolded mitochondrial proteins. CLPP-null mice exhibit growth retardation, deafness, and sterility, resembling human Perrault syndrome, but also display immune system alterations. However, the molecular mechanisms and signaling pathways underlying immunological changes in CLPP-null mice remain unclear. In this study, we report the steady-state activation of type I IFN signaling and antiviral gene expression in CLPP-deficient cells and tissues, resulting in marked resistance to RNA and DNA virus infection. Depletion of the cyclic GMP-AMP (cGAS)–stimulator of IFN genes (STING) DNA sensing pathway reduces steady-state IFN-I signaling and abrogates the broad antiviral phenotype of CLPP-null cells. Moreover, we report that CLPP deficiency leads to mitochondrial DNA (mtDNA) instability and packaging alterations. Pharmacological and genetic approaches to deplete mtDNA or inhibit cytosolic release markedly reduce antiviral gene expression, implicating mtDNA stress as the driver of IFN-I signaling in CLPP-null mice. Our work places the cGAS–STING–IFN-I innate immune pathway downstream of CLPP and may have implications for understanding Perrault syndrome and other human diseases involving CLPP dysregulation.</jats:p
Inactivity of peptidase clpp causes primary accumulation of mitochondrial disaggregase clpx with its interacting nucleoid proteins, and of mtdna.
Biallelic pathogenic variants in CLPP, encoding mitochondrial matrix peptidase ClpP, cause a rare autosomal recessive condition, Perrault syndrome type 3 (PRLTS3). It is characterized by primary ovarian insufficiency and early sensorineural hearing loss, often associated with pro-gressive neurological deficits. Mouse models showed that accumulations of (i) its main protein in-teractor, the substrate-selecting AAA+ ATPase ClpX, (ii) mitoribosomes, and (iii) mtDNA nucleoids are the main cellular consequences of ClpP absence. However, the sequence of these events and their validity in human remain unclear. Here, we studied global proteome profiles to define ClpP substrates among mitochondrial ClpX interactors, which accumulated consistently in ClpP-null mouse embryonal fibroblasts and brains. Validation work included novel ClpP-mutant patient fi-broblast proteomics. ClpX co-accumulated in mitochondria with the nucleoid component POLDIP2, the mitochondrial poly(A) mRNA granule element LRPPRC, and tRNA processing factor GFM1 (in mouse, also GRSF1). Only in mouse did accumulated ClpX, GFM1, and GRSF1 appear in nuclear fractions. Mitoribosomal accumulation was minor. Consistent accumulations in murine and human fibroblasts also affected multimerizing factors not known as ClpX interactors, namely, OAT, ASS1, ACADVL, STOM, PRDX3, PC, MUT, ALDH2, PMPCB, UQCRC2, and ACADSB, but the impact on downstream metabolites was marginal. Our data demonstrate the primary impact of ClpXP on the assembly of proteins with nucleic acids and show nucleoid enlargement in human as a key consequence
TRIM14 is a key regulator of the type I interferon response during <i>Mycobacterium tuberculosis</i> infection
ABSTRACTTripartite motif-containing proteins (TRIMs) play a variety of recently described roles in innate immunity. While many TRIMs regulate type I interferon (IFN) expression following cytosolic nucleic acid sensing of viruses, their contribution to innate immune signaling and gene expression during bacterial infection remains largely unknown. Because Mycobacterium tuberculosis is a potent activator of cGAS-dependent cytosolic DNA sensing, we set out to investigate a role for TRIM proteins in regulating macrophage responses to M. tuberculosis. Here we demonstrate that TRIM14, a non-canonical TRIM that lacks an E3 ligase RING domain, is a critical negative regulator of the type I IFN response in macrophages. We show that TRIM14 physically interacts with both cGAS and TBK1 and that macrophages lacking TRIM14 dramatically hyperinduce interferon stimulated gene (ISG) expression following cytosolic nucleic acid transfection, IFN-β treatment, and M. tuberculosis infection. Consistent with a defect in resolution of the type I IFN response, Trim14 knockout (KO) macrophages have more phospho-Ser754 STAT3 relative to phospho-727 and fail to upregulate the STAT3 target Socs3 (Suppressor of Cytokine Signaling 3), which is required to turn off IFNAR signaling. These data support a model whereby TRIM14 acts as a scaffold between TBK1 and STAT3 to promote phosphorylation of STAT3 at Ser727 and enhance negative regulation of ISG expression. Remarkably, Trim14 KO macrophages hyperinduce antimicrobials like Inos2 and are significantly better than control cells at limiting M. tuberculosis replication. Collectively, these data reveal a previously unappreciated role for TRIM14 in resolving type I IFN responses and controlling M. tuberculosis infection.</jats:p
TRIM14 Is a Key Regulator of the Type I IFN Response during <i>Mycobacterium tuberculosis</i> Infection
Abstract
Tripartite motif-containing proteins (TRIMs) play a variety of recently described roles in innate immunity. Although many TRIMs regulate type I IFN expression following cytosolic nucleic acid sensing of viruses, their contribution to innate immune signaling and gene expression during bacterial infection remains largely unknown. Because Mycobacterium tuberculosis is an activator of cGAS-dependent cytosolic DNA sensing, we set out to investigate a role for TRIM proteins in regulating macrophage responses to M. tuberculosis. In this study, we demonstrate that TRIM14, a noncanonical TRIM that lacks an E3 ubiquitin ligase RING domain, is a critical negative regulator of the type I IFN response in Mus musculus macrophages. We show that TRIM14 interacts with both cGAS and TBK1 and that macrophages lacking TRIM14 dramatically hyperinduce IFN stimulated gene (ISG) expression following M. tuberculosis infection, cytosolic nucleic acid transfection, and IFN-β treatment. Consistent with a defect in resolution of the type I IFN response, Trim14 knockout macrophages have more phospho-Ser754 STAT3 relative to phospho-Ser727 and fail to upregulate the STAT3 target Socs3, which is required to turn off IFNAR signaling. These data support a model whereby TRIM14 acts as a scaffold between TBK1 and STAT3 to promote phosphorylation of STAT3 at Ser727 and resolve ISG expression. Remarkably, Trim14 knockout macrophages hyperinduce expression of antimicrobial genes like Nos2 and are significantly better than control cells at limiting M. tuberculosis replication. Collectively, these data reveal an unappreciated role for TRIM14 in resolving type I IFN responses and controlling M. tuberculosis infection.</jats:p
