912 research outputs found

    Evaluation of the Mineral Element Profile of Wastes of Some Wine Grape (Vitis Vinifera L.) Varieties

    Full text link
    In this study, the level of macro and micro elements of six wine grape cultivars were determined in seeds, bagasse (skin and pulp) and pomace (seed, skin and pulp) by inductively coupled plasma mass spectrometry and atomic absorption spectroscopy after microwave digestion (ICP-AES). The levels of macro and micro elements exhibited a genotype dependent alteration and affected by the part of the berry sampled. Potassium was the predominant macro element in bagasse and pomace, varying from 6.78 g/kg dry weight in pomace (Carignane) to 21.05 g/kg dry weight in bagasse (Cabernet Sauvignon). However, the level of calcium was higher than potassium in seeds and varied between 4.95 g/kg (Kalecik karası) and 6.73 g/kg (Carignane). Seeds were also richer than the bagasse and pomace related with phosphorus, magnesium, and sulfur. Among the micro elements, Fe had the highest amount in all parts of the berries. Its content ranged from 13.9 mg/kg dry weights in bagasse of Semillon to 24.8 mg/kg dry weight in seeds of Syrah. Iron, manganese, zinc and molybdenum in seeds; copper and boron in bagasse were higher amount than the other groups analyzed. The results of this study show that all parts of the grape berries are potentially rich sources of mineral elements. So, they could be used as a food supplement to improve the nutritive value of the human diet and for some engineering processes in food industry

    Polysulfone/Clay Nanocomposites by in situ Photoinduced Crosslinking Polymerization

    Get PDF
    Cataloged from PDF version of article.PSU/MMT nanocomposites are prepared by dispersing MMT nanolayers in a PSU matrix via in situ photoinduced crosslinking polymerization. Intercalated methacrylate-functionalized MMT and polysulfone dimethacrylate macromonomer are synthesized independently by esterification. In situ photoinduced crosslinking of the intercalated monomer and the PSU macromonomer in the silicate layers leads to nanocomposites that are formed by individually dispersing inorganic silica nanolayers in the polymer matrix. The morphology of the nanocomposites is investigated by XRD and TEM, which suggests the random dispersion of silicate layers in the PSU matrix. TGA results confirm that the thermal stability and char yield of PSU/MMT nanocomposites increases with the increase of clay loading

    The RFOFO Ionization Cooling Ring for Muons

    Full text link
    Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second US Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such \textit{real-world} effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.Comment: 27 pages, 18 figures and 5 tables. Submitted to Phys. Rev. ST-A

    Antiproton Production in p+Ap+A Collisions at AGS Energies

    Full text link
    Inclusive and semi-inclusive measurements are presented for antiproton (pˉ\bar{p}) production in proton-nucleus collisions at the AGS. The inclusive yields per event increase strongly with increasing beam energy and decrease slightly with increasing target mass. The pˉ\bar{p} yield in 17.5 GeV/c p+Au collisions decreases with grey track multiplicity, NgN_g, for Ng>0N_g>0, consistent with annihilation within the target nucleus. The relationship between NgN_g and the number of scatterings of the proton in the nucleus is used to estimate the pˉ\bar{p} annihilation cross section in the nuclear medium. The resulting cross section is at least a factor of five smaller than the free pˉp\bar{p}-p annihilation cross section when assuming a small or negligible formation time. Only with a long formation time can the data be described with the free pˉp\bar{p}-p annihilation cross section.Comment: 8 pages, 6 figure

    Muon Colliders

    Full text link
    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity \mumu colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.Comment: 28 pages, with 12 postscript figures. To be published Proceedings of the 9th Advanced ICFA Beam Dynamics Workshop, AIP Pres
    corecore