2,204 research outputs found

    Dynamical Screening and Superconducting State in Intercalated Layered Metallochloronitrides

    Full text link
    An essential property of layered systems is the dynamical nature of the screened Coulomb interaction. Low energy collective modes appear as a consequence of the layering and provide for a superconducting-pairing channel in addition to the electron-phonon induced attractive interaction. We show that taking into account this feature allows to explain the high critical temperatures (Tc~26K) observed in recently discovered intercalated metallochloronitrides. The exchange of acoustic plasmons between carriers leads to a significant enhancement of the superconducting critical temperature that is in agreement with the experimental observations

    Building a 3.5 m prototype interferometer for the Q & A vacuum birefringence experiment and high precision ellipsometry

    Full text link
    We have built and tested a 3.5 m high-finesse Fabry-Perot prototype inteferometer with a precision ellipsometer for the QED test and axion search (Q & A) experiment. We use X-pendulum-double-pendulum suspension designs and automatic control schemes developed by the gravitational-wave detection community. Verdet constant and Cotton-Mouton constant of the air are measured as a test. Double modulation with polarization modulation 100 Hz and magnetic-field modulation 0.05 Hz gives 10^{-7} rad phase noise for a 44-minute integration.Comment: This draft has been presented in the 5th Edoardo Amaldi Conference on Gravitational Wave

    Transport in the Heavy Fermion Superconductor UPt3

    Full text link
    We report new theoretical results and analysis for the transport properties of superconducting UPt3 based on the leading models for the pairing symmetry. We use Fermi surface data and the measured inelastic scattering rate to show that the low-temperature thermal conductivity and transverse sound attenuation in the A and B phase of UPt3 are in excellent agreement with pairing states belonging to the two-dimensional orbital E2u representation.Comment: 2 pages, contribution at Int. Conf. LT-22, Helsinki, Finland, 4-11 Aug. 199

    Pressure-Temperature-Magnetic Field Phase Diagram of Ferromagnetic Kondo Lattice CeRuPO

    Full text link
    We report the temperature-pressure-magnetic field phase diagram made from electrical resistivity measurements for the ferromagnetic (FM) Kondo lattice CeRuPO. The ground state at zero field changes from the FM state to another state, which is suggested to be an antiferromagnetic (AFM) state, above ~0.7 GPa, and the magnetically ordered state is completely suppressed at ~2.8 GPa. In addition to the collapse of the AFM state under pressure and a magnetic field, a metamagnetic (MM) transition from a paramagnetic state to a polarized paramagnetic state appears. CeRuPO will give us a rich playground for understanding the mechanism of the MM transition under comparable FM and AFM correlations in the Kondo lattice.Comment: 5 pages, 5 figures, to appear in J. Phys. Soc. Jp

    Quasiparticle Interactions for f2^2-Impurity Anderson Model with Crystalline-Electric-Field: Numerical Renormalization Group Study

    Full text link
    The aspect of the quasiparticle interaction of a local Fermi liquid, the impurity version of f2^2-based heavy fermions, is studied by the Wilson numerical renormalization group method. In particular, the case of the f2^2-singlet crystalline-electric-field ground state is investigated assuming the case of UPt3_3 with the hexagonal symmetry. It is found that the interorbital interaction becomes larger than the intraorbital one in contrast to the case of the bare Coulomb interaction for the parameters relevant to UPt3_3. This result offers us a basis to construct a microscopic theory of the superconductivity of UPt3_3 where the interorbital interactions are expected to play important roles.Comment: 9 pages, 5 figure

    Josephson Current between Triplet and Singlet Superconductors

    Full text link
    The Josephson effect between triplet and singlet superconductors is studied. Josephson current can flow between triplet and singlet superconductors due to the spin-orbit coupling in the spin-triplet superconductor but it is finite only when triplet superconductor has Lz=Sz=±1L_z=-S_z=\pm 1, where LzL_z and SzS_z are the perpendicular components of orbital angular momentum and spin angular momentum of the triplet Cooper pairs, respectively. The recently observed temperature and orientational dependence of the critical current through a Josephson junction between UPt3_3 and Nb is investigated by considering a non-unitary triplet state.Comment: 4 pages, no figure

    Gapless Magnetic and Quasiparticle Excitations due to the Coexistence of Antiferromagnetism and Superconductivity in CeRhIn5_5 : A study of 115^{115}In-NQR under Pressure

    Full text link
    We report systematic measurements of ac-susceptibility, nuclear-quadrupole-resonance spectrum, and nuclear-spin-lattice-relaxation time (T1T_1) on the pressure (PP)- induced heavy-fermion (HF) superconductor CeRhIn5_5. The temperature (TT) dependence of 1/T11/T_1 at PP = 1.6 GPa has revealed that antiferromagnetism (AFM) and superconductivity (SC) coexist microscopically, exhibiting the respective transition at TN=2.8T_N = 2.8 K and TcMFT^{MF}_c = 0.9 K. It is demonstrated that SC does not yield any trace of gap opening in low-lying excitations below Tconset=2T_c^{onset} = 2 K, but TcMF=0.9T_c^{MF} = 0.9 K, followed by a T1TT_1T = const law. These results point to the unconventional characteristics of SC coexisting with AFM. We highlight that both of the results deserve theoretical work on the gapless nature in low-lying excitation spectrum due to the coexistence of AFM and SC and the lack of the mean-field regime below Tconset=2T_c^{onset} = 2 K.Comment: 4pages,5figures,revised versio

    Electronic Collective Modes and Superconductivity in Layered Conductors

    Full text link
    A distinctive feature of layered conductors is the presence of low-energy electronic collective modes of the conduction electrons. This affects the dynamic screening properties of the Coulomb interaction in a layered material. We study the consequences of the existence of these collective modes for superconductivity. General equations for the superconducting order parameter are derived within the strong-coupling phonon-plasmon scheme that account for the screened Coulomb interaction. Specifically, we calculate the superconducting critical temperature Tc taking into account the full temperature, frequency and wave-vector dependence of the dielectric function. We show that low-energy plasmons may contribute constructively to superconductivity. Three classes of layered superconductors are discussed within our model: metal-intercalated halide nitrides, layered organic materials and high-Tc oxides. In particular, we demonstrate that the plasmon contribution (electronic mechanism) is dominant in the first class of layered materials. The theory shows that the description of so-called ``quasi-two-dimensional superconductors'' cannot be reduced to a purely 2D model, as commonly assumed. While the transport properties are strongly anisotropic, it remains essential to take into account the screened interlayer Coulomb interaction to describe the superconducting state of layered materials.Comment: Final version (minor changes) 14 pages, 6 figure

    Suspension of the fiber mode-cleaner launcher and measurement of the high extinction-ratio (10^{-9}) ellipsometer for the Q & A experiment

    Full text link
    The Q & A experiment, first proposed and started in 1994, provides a feasible way of exploring the quantum vacuum through the detection of vacuum birefringence effect generated by QED loop diagram and the detection of the polarization rotation effect generated by photon-interacting (pseudo-)scalar particles. Three main parts of the experiment are: (1) Optics System (including associated Electronic System) based on a suspended 3.5-m high finesse Fabry-Perot cavity, (2) Ellipsometer using ultra-high extinction-ratio polarizer and analyzer, and (3) Magnetic Field Modulation System for generating the birefringence and the polarization rotation effect. In 2002, the Q & A experiment achieved the Phase I sensitivity goal. During Phase II, we set (i) to improve the control system of the cavity mirrors for suppressing the relative motion noise, (ii) to enhance the birefringence signal by setting-up a 60-cm long 2.3 T transverse permanent magnet rotatable to 10 rev/s, (iii) to reduce geometrical noise by inserting a polarization-maintaining optical fiber (PM fiber) as a mode cleaner, and (iv) to use ultra-high extinction-ratio (10^{-9}) polarizer and analyzer for ellipsometry. Here we report on (iii) & (iv); specifically, we present the properties of the PM-fiber mode-cleaner, the transfer function of its suspension system, and the result of our measurement of high extinction-ratio polarizer and analyzer.Comment: 8 pages, 6 figures, presented in the 6th Edoardo Amaldi Conference on Gravitational Waves, Okinawa, Japan, June 2005, and accepted by "Journal of Physics: Conference Series". Modifications from version 2 were made based on the referees' comments on figures. Ref. [31] were update

    Ellipsometry noise spectrum, suspension transfer function measurement and closed-loop control of the suspension system in the Q & A experiment

    Full text link
    The Q & A experiment, aiming at the detection of vacuum birefringence predicted by quantum electrodynamics, consists mainly of a suspended 3.5 m Fabry-Perot cavity, a rotating permanent dipole magnet and an ellipsometer. The 2.3 T magnet can rotate up to 10 rev/s, introducing an ellipticity signal at twice the rotation frequency. The X-pendulum gives a good isolation ratio for seismic noise above its main resonant frequency 0.3 Hz. At present, the ellipsometry noise decreases with frequency, from 1*10^{-5} rad Hz^{-1/2} at 5 Hz, 2*10^{-6} rad Hz^{-1/2} at 20 Hz to 5*10^{-7} rad Hz^{-1/2} at 40 Hz. The shape of the noise spectrum indicates possible improvement can be made by further reducing the movement between the cavity mirrors. From the preliminary result of yaw motion alignment control, it can be seen that some peaks due to yaw motion of the cavity mirror was suppressed. In this paper, we first give a schematic view of the Q & A experiment, and then present the measurement of transfer function of the compound X-pendulum-double pendulum suspension. A closed-loop control was carried out to verify the validity of the measured transfer functions. The ellipsometry noise spectra with and without yaw alignment control and the newest improvement is presented.Comment: 7 pages, 5 figures, presented in 6th Edoardo Amaldi Conference on Gravitational Waves, June 2005, Okinawa Japan and submitted to Journal of Physics: Conference Series. Some modifications are made according to the referee's comments: mainly to explain the relation between the displacement of cavity mirror and the ellipticity noise spectru
    corecore