407 research outputs found
Reconciling Semiclassical and Bohmian Mechanics: II. Scattering states for discontinuous potentials
In a previous paper [J. Chem. Phys. 121 4501 (2004)] a unique bipolar
decomposition, Psi = Psi1 + Psi2 was presented for stationary bound states Psi
of the one-dimensional Schroedinger equation, such that the components Psi1 and
Psi2 approach their semiclassical WKB analogs in the large action limit.
Moreover, by applying the Madelung-Bohm ansatz to the components rather than to
Psi itself, the resultant bipolar Bohmian mechanical formulation satisfies the
correspondence principle. As a result, the bipolar quantum trajectories are
classical-like and well-behaved, even when Psi has many nodes, or is wildly
oscillatory. In this paper, the previous decomposition scheme is modified in
order to achieve the same desirable properties for stationary scattering
states. Discontinuous potential systems are considered (hard wall, step, square
barrier/well), for which the bipolar quantum potential is found to be zero
everywhere, except at the discontinuities. This approach leads to an exact
numerical method for computing stationary scattering states of any desired
boundary conditions, and reflection and transmission probabilities. The
continuous potential case will be considered in a future publication.Comment: 18 pages, 8 figure
Reconciling Semiclassical and Bohmian Mechanics: III. Scattering states for continuous potentials
In a previous paper [J. Chem. Phys. 121 4501 (2004)] a unique bipolar
decomposition, Psi = Psi1 + Psi2 was presented for stationary bound states Psi
of the one-dimensional Schroedinger equation, such that the components Psi1 and
Psi2 approach their semiclassical WKB analogs in the large action limit. The
corresponding bipolar quantum trajectories, as defined in the usual Bohmian
mechanical formulation, are classical-like and well-behaved, even when Psi has
many nodes, or is wildly oscillatory. A modification for discontinuous
potential stationary stattering states was presented in a second paper [J.
Chem. Phys. 124 034115 (2006)], whose generalization for continuous potentials
is given here. The result is an exact quantum scattering methodology using
classical trajectories. For additional convenience in handling the tunneling
case, a constant velocity trajectory version is also developed.Comment: 16 pages and 14 figure
Electronic structure of NiS_{1-x}Se_x
We investigate the electronic structure of the metallic NiSSe
system using various electron spectroscopic techniques. The band structure
results do not describe the details of the spectral features in the
experimental spectrum, even for this paramagnetic metallic phase. However, a
parameterized many-body multi-band model is found to be successful in
describing the Ni~2 core level and valence band, within the same model. The
asymmetric line shape as well as the weak intensity feature in the Ni~2 core
level spectrum has been ascribed to extrinsic loss processes in the system. The
presence of satellite features in the valence band spectrum shows the existence
of the lower Hubbard band, deep inside the metallic regime, consistent
with the predictions of the dynamical mean field theory.Comment: To be published in Physical Review B, 18 pages and 5 figure
Quantum interference within the complex quantum Hamilton-Jacobi formalism
Quantum interference is investigated within the complex quantum
Hamilton-Jacobi formalism. As shown in a previous work [Phys. Rev. Lett. 102,
250401 (2009)], complex quantum trajectories display helical wrapping around
stagnation tubes and hyperbolic deflection near vortical tubes, these
structures being prominent features of quantum caves in space-time Argand
plots. Here, we further analyze the divergence and vorticity of the quantum
momentum function along streamlines near poles, showing the intricacy of the
complex dynamics. Nevertheless, despite this behavior, we show that the
appearance of the well-known interference features (on the real axis) can be
easily understood in terms of the rotation of the nodal line in the complex
plane. This offers a unified description of interference as well as an elegant
and practical method to compute the lifetime for interference features, defined
in terms of the average wrapping time, i.e., considering such features as a
resonant process.Comment: revised version, 13 pages, 11 figures, 1 tabl
Attitudes on Policy and Punishment: Opposition to Inequality-Based Government Aid Predicts Support for Capital Punishment
Objective: There exists a well-developed body of research on the attitudinal correlates of support for capital punishment. Among the most robust of these is racism and racial attributions. The study presented here was designed to explore whether policy prescriptions reflective of racial attitudes can predict support for capital punishment.
Method: Data come from the 2018 iteration of the NORC General Social Survey. The dependent variable is a dichotomous measure of support for the death penalty for people convicted of murder. The independent variable is a 5-level Likert-type item of support for government aid to Blacks to help overcome discrimination. Binary logistic regression was used to analyze the relationship between variables net of standard controls.
Results: Over 63 percent of the total sample supported the death penalty. Support among those strongly favored government aid to Blacks was 41 percent. Support among those who strongly rejected aid to Blacks was 78 percent. Results of the regression analysis showed each decrease in the level of support for government aid to Blacks was associated with an 18.6 percent increase in the likelihood of supporting the death penalty.
Conclusion: Capital punishment support is not simply a function of abstract, hypothetical racial attitudes. The findings reported here suggest support for the death penalty is associated with concrete policy prescriptions that maintain racial inequalities. Given that capital punishment continues in large part due to public support, it should be recognized that this support is based on a desire to maintain racial inequalities through government action
A 3D-printed nasopharyngeal swab for COVID-19 diagnostic testing.
The nasopharyngeal swab is a critical component of the COVID-19 testing kit. Supply chain remains greatly impacted by the pandemic. Teams from USF Health Radiology and Northwell Health System developed a 3D-printed stopgap alternative. This descriptive study details the workflow and provides guidance for hospital-based 3D printing labs to leverage the design to make a positive impact on the pandemic. Swab use is also outlined, and the early information regarding clinical use is described, including an ongoing multicenter trial methodology
Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence
Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in urban environments and to detect chemical species concentrations in migrating plumes. Given is our research in these areas and a status report of our progress
The consumer scam: an agency-theoretic approach
Despite the extensive body of literature that aims to explain the phenomenon of consumer scams, the structure of information in scam relationships remains relatively understudied. The purpose of this article is to develop an agency-theoretical approach to the study of information in perpetrator-victim interactions. Drawing a distinction between failures of observation and failures of judgement in the pre-contract phase, we introduce a typology and a set of propositions that explain the severity of adverse selection problems in three classes of scam relationships. Our analysis provides a novel, systematic explanation of the structure of information that facilitates scam victimisation, while also enabling critical scrutiny of a core assumption in agency theory regarding contract design. We highlight the role of scam perpetrators as agents who have access to private information and exercise considerable control over the terms and design of scam relationships. Focusing on the consumer scam context, we question a theoretical assumption, largely taken for granted in the agency literature, that contact design is necessarily in the purview of the uninformed principal
Recommended from our members
Dynamical Behavior of Multi-Robot Systems Using Lattice Gas Automata
Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems. Our group has been studying the collective behavior of autonomous, multi-agent systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi-robotic and multi-agents architectures. Our goal is to coordinate a constellation of point sensors that optimizes spatial coverage and multivariate signal analysis using unmanned robotic vehicles (e.g., RATLERs, Robotic All-ten-sin Lunar Exploration Rover-class vehicles). Overall design methodology is to evolve complex collective behaviors realized through simple interaction (kinetic) physics and artificial intelligence to enable real-time operational responses to emerging threats. This paper focuses on our recent work understanding the dynamics of many-body systems using the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's deformation rate, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent non-linearity of the dynamical equations describing large ensembles, development of stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots that maneuvers past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with knowledge, the swarm adapts by changing state in order to avoid the obstacle. Simulation results are qualitatively similar to lattice gas
- …
