1,741 research outputs found

    L'OCCGE et l'onchocercose

    Get PDF

    Epiconvergence of a Sequence of Level Sums of Convex Functions

    Get PDF
    We consider the problem of minimizing the max of two convex functions from both approximation and sensitivity point of view.This lead up to study the epiconvergence of a sequence of level sums of convex functions and the related dual problems

    Effect of compost and soil properties on the availability of compost phosphate for white clover ( Trifolium repens L.)

    Get PDF
    Wide variation in results exists in the literature on the effectiveness of composts to sustain the phosphorus (P) nutrition of crops. The aim of this work was to assess the importance of some soil and composts properties on the utilization of compost-P by white clover (Trifolium repens L.). This study was carried out with samples collected from four composts made from solid kitchen and garden wastes, and with two soil samples taken from the A horizon of a P-rich sandy acidic Dystrochrept and of a P-limited clayey calcareous Eutrochrept. Changes in the amount of inorganic P (Pi) isotopically exchangeable within 1 min (E1min) were measured during 32 weeks in incubated soil-composts or soil-KH2PO4mixtures where P sources had been added at the rate of 50 mg P kg−1 soil. Uptake of compost-P or KH2PO4-P by white clover was measured on the same amended soils during 16 weeks. In both soils, the application of composts resulted after 32 weeks of incubation in E1min values ranging between those observed in the control without P and those observed in the KH2PO4treatment, i.e., in values ranging between 4.2 and 5.9 mg P kg−1 in the sandy acidic soil and between from 1.6 to 4.3 mg P kg−1 in the clayey calcareous soil. The total coefficient of utilization of compost-P (CU-P) by white clover reached values in both soils for the four composts ranging between 6.5% and 11.6% of the added P while in the presence of KH2PO4 the CU-P reached values ranging between 14.5% in the clayey calcareous soil and 18.5% in the sandy acidic soil. Results obtained in the sandy acidic soil suggest, that white clover initially used a fraction of the rapidly exchangeable compost P, while at a latter stage plant roots enhanced the mineralisation of compost organic P and took up a fraction of the mineralized P. These relations were not observed in the clayey calcareous soil probably because of its high sorbing capacity for P. In the sandy acidic soil, composts application increased the uptake of soil P by the plant from 31.4 mg P kg−1 soil in the control without P to values ranging between 37.9 to 42.7 mg P kg−1 soil in the presence of composts. This indirect effect was related to a general improvement of plant growth conditions in this soil induced by compost addition (from 9.9 g DM kg−1 soil in the control without P to values ranging between 14.0 to 16.1 g DM kg−1 soil in the presence of composts) and/or to the release of Al- or Fe bound soil P to the solution due to soil pH increase following compost application. Finally the total coefficient of utilization of P (CU-P) derived from KH2PO4 and composts was related to the total amount of N exported by white clover in the P-limited clayey calcareous soil but not in the P-rich sandy acidic soil. This suggests that in a soil where N2 biological fixation is limited by low P availability, the CU-P of a compost by white clover is not only related to the forms of P present in the compost but also to its effect on N nutrition. However, it is not clear whether this improved N nutrition was due to compost mineralisation, or to an indirect compost effect on the N2 biological fixatio

    Forms and exchangeability of inorganic phosphate in composted solid organic wastes

    Get PDF
    Switzerland yearly produces more than 260,000 Mg of compost, two thirds of which is recycled in agriculture and horticulture. This research was undertaken to examine the forms and availability of inorganic P (Pi) in Swiss composts made from solid kitchen and garden wastes using the isotopic exchange kinetic technique, a sequential Pi extraction and magic angle spinning (MAS) solid-state 31P nuclear magnetic resonance (NMR) spectroscopy. The different approaches described in this paper demonstrate the presence of a complex mixture of Pi species in the studied composts. Isotopic exchange experiments and sequential extraction showed that these composts contained relatively large concentrations of rapidly available Pi. Significant correlations were observed between the concentration of water-soluble Pi (Cp), and the total N, C and P content of composts suggesting that organic substances partly controlled the amount of rapidly available Pi. Significant correlations were observed in alkaline composts between the amount of Pi which can not be exchanged within 3 months and the total P and Ca content. In alkaline composts solid-state MAS 31P NMR results suggested the presence of a range of slightly soluble and poorly crystallized Ca-P compounds such as apatites or octacalcium phosphates and of organic P compounds. The slowly or non-exchangeable Pi present in these composts could therefore be bound to Ca in the form of apatites or octacalcium phosphate

    Comparative Evaluation of Action Recognition Methods via Riemannian Manifolds, Fisher Vectors and GMMs: Ideal and Challenging Conditions

    Full text link
    We present a comparative evaluation of various techniques for action recognition while keeping as many variables as possible controlled. We employ two categories of Riemannian manifolds: symmetric positive definite matrices and linear subspaces. For both categories we use their corresponding nearest neighbour classifiers, kernels, and recent kernelised sparse representations. We compare against traditional action recognition techniques based on Gaussian mixture models and Fisher vectors (FVs). We evaluate these action recognition techniques under ideal conditions, as well as their sensitivity in more challenging conditions (variations in scale and translation). Despite recent advancements for handling manifolds, manifold based techniques obtain the lowest performance and their kernel representations are more unstable in the presence of challenging conditions. The FV approach obtains the highest accuracy under ideal conditions. Moreover, FV best deals with moderate scale and translation changes

    Residual stress measurement round robin on an electron beam welded joint between austenitic stainless steel 316L(N) and ferritic steel P91

    Get PDF
    This paper is a research output of DMW-Creep project which is part of a national UK programme through the RCUK Energy programme and India's Department of Atomic Energy. The research is focussed on understanding the characteristics of welded joints between austenitic stainless steel and ferritic steel that are widely used in many nuclear power generating plants and petrochemical industries as well as conventional coal and gas-fired power systems. The members of the DMW-Creep project have under- taken parallel round robin activities measuring the residual stresses generated by a dissimilar metal weld (DMW) between AISI 316L(N) austenitic stainless steel and P91 ferritic-martensitic steel. Electron beam (EB) welding was employed to produce a single bead weld on a plate specimen and an additional smoothing pass (known cosmetic pass) was then introduced using a defocused beam. The welding re- sidual stresses have been measured by five experimental methods including (I) neutron diffraction (ND), (II) X-Ray diffraction (XRD), (III) contour method (CM), (IV) incremental deep hole drilling (iDHD) and (V) incremental centre hole drilling (iCHD). The round robin measurements of weld residual stresses are compared in order to characterise surface and sub-surface residual stresses comprehensively
    corecore