1,472 research outputs found

    De-biased Populations of Kuiper Belt Objects from the Deep Ecliptic Survey

    Full text link
    The Deep Ecliptic Survey (DES) discovered hundreds of Kuiper Belt objects from 1998-2005. Follow-up observations yielded 304 objects with good dynamical classifications (Classical, Scattered, Centaur, or 16 mean-motion resonances with Neptune). The DES search fields are well documented, enabling us to calculate the probability of detecting objects with particular orbital parameters and absolute magnitudes at a randomized point in each orbit. Grouping objects together by dynamical class leads, we estimate the orbital element distributions (a, e, i) for the largest three classes (Classical, 3:2, and Scattered) using maximum likelihood. Using H-magnitude as a proxy for the object size, we fit a power law to the number of objects for 8 classes with at least 5 detected members (246 objects). The best Classical slope is alpha=1.02+/-0.01 (observed from 5<=H<=7.2). Six dynamical classes (Scattered plus 5 resonances) are consistent in slope with the Classicals, though the absolute number of objects is scaled. The exception to the power law relation are the Centaurs (non-resonant with perihelia closer than Neptune, and thus detectable at smaller sizes), with alpha=0.42+/-0.02 (7.5<H<11). This is consistent with a knee in the H-distribution around H=7.2 as reported elsewhere (Bernstein et al. 2004, Fraser et al. 2014). Based on the Classical-derived magnitude distribution, the total number of objects (H<=7) in each class are: Classical (2100+/-300 objects), Scattered (2800+/-400), 3:2 (570+/-80), 2:1 (400+/-50), 5:2 (270+/-40), 7:4 (69+/-9), 5:3 (60+/-8). The independent estimate for the number of Centaurs in the same H range is 13+/-5. If instead all objects are divided by inclination into "Hot" and "Cold" populations, following Fraser et al. (2014), we find that alphaHot=0.90+/-0.02, while alphaCold=1.32+/-0.02, in good agreement with that work.Comment: 26 pages emulateapj, 6 figures, 5 tables, accepted by A

    Possible Observational Criteria for Distinguishing Brown Dwarfs from Planets

    Get PDF
    The difference in formation process between binary stars and planetary systems is reflected in their composition as well as their orbital architecture, particularly orbital eccentricity as a function of orbital period. It is suggested here that this difference can be used as an observational criterion to distinguish between brown dwarfs and planets. Application of the orbital criterion suggests that with three possible exceptions, all of the recently-discovered substellar companions discovered to date may be brown dwarfs and not planets. These criterion may be used as a guide for interpretation of the nature of sub-stellar mass companions to stars in the future.Comment: LaTeX, 11 pages including 2 figures, accepted for publication in the Astrophysical Journal Letter

    Do Proto-Jovian Planets Drive Outflows?

    Get PDF
    We discuss the possibility that gaseous giant planets drive strong outflows during early phases of their formation. We consider the range of parameters appropriate for magneto-centrifugally driven stellar and disk outflow models and find that if the proto-Jovian planet or accretion disk had a magnetic field of >~ 10 Gauss and moderate mass inflow rates through the disk of less than 10^-7 M_J/yr that it is possible to drive an outflow. Estimates based both on scaling from empirical laws observed in proto-stellar outflows and the magneto-centrigugal disk and stellar+disk wind models suggest that winds with mass outflow rates of 10^-8 M_J/yr and velocities of order ~ 20 km/s could be driven from proto-Jovian planets. Prospects for detection and some implications for the formation of the solar system are briefly discussed.Comment: AAS Latex, accepted for Ap

    Theoretical Transmission Spectra During Extrasolar Giant Planet Transits

    Get PDF
    The recent transit observation of HD 209458 b - an extrasolar planet orbiting a sun-like star - confirmed that it is a gas giant and determined that its orbital inclination is 85 degrees. This inclination makes possible investigations of the planet atmosphere. In this paper we discuss the planet transmission spectra during a transit. The basic tenet of the method is that the planet atmosphere absorption features will be superimposed on the stellar flux as the stellar flux passes through the planet atmosphere above the limb. The ratio of the planet's transparent atmosphere area to the star area is small, approximately 10^{-3} to 10^{-4}; for this method to work very strong planet spectral features are necessary. We use our models of close-in extrasolar giant planets to estimate promising absorption signatures: the alkali metal lines, in particular the Na I and K I resonance doublets, and the He I 23S2^3S - 23P2^3P triplet line at 1083.0 nm. If successful, observations will constrain the line-of-sight temperature, pressure, and density. The most important point is that observations will constrain the cloud depth, which in turn will distinguish between different atmosphere models. We also discuss the potential of this method for EGPs at different orbital distances and orbiting non-solar-type stars.Comment: revised to agree with accepted paper, ApJ, in press. 12 page

    Physical Properties of Near-Earth Asteroid 2011 MD

    Get PDF
    We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 {\mu}m) of the Infrared Array Camera and detected the target within the 2{\sigma} positional uncertainty ellipse. Using an asteroid thermophysical model and a model of nongravitational forces acting upon the object we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data. We estimate 2011 MD to be 6 (+4/-2) m in diameter with a geometric albedo of 0.3 (+0.4/-0.2) (uncertainties are 1{\sigma}). We find the asteroid's most probable bulk density to be 1.1 (+0.7/-0.5) g cm^{-3}, which implies a total mass of (50-350) t and a macroporosity of >=65%, assuming a material bulk density typical of non-primitive meteorite materials. A high degree of macroporosity suggests 2011 MD to be a rubble-pile asteroid, the rotation of which is more likely to be retrograde than prograde.Comment: 20 pages, 4 figure

    IRS Spectra of Solar-Type Stars: \break A Search for Asteroid Belt Analogs

    Full text link
    We report the results of a spectroscopic search for debris disks surrounding 41 nearby solar type stars, including 8 planet-bearing stars, using the {\it Spitzer Space Telescope}. With accurate relative photometry using the Infrared Spectrometer (IRS) between 7-34 \micron we are able to look for excesses as small as \sim2% of photospheric levels with particular sensitivity to weak spectral features. For stars with no excess, the 3σ3\sigma upper limit in a band at 30-34 μ\mum corresponds to \sim 75 times the brightness of our zodiacal dust cloud. Comparable limits at 8.5-13 μ\mum correspond to \sim 1,400 times the brightness of our zodiacal dust cloud. These limits correspond to material located within the <<1 to \sim5 AU region that, in our solar system, originates from debris associated with the asteroid belt. We find excess emission longward of \sim25 μ\mum from five stars of which four also show excess emission at 70 μ\mum. This emitting dust must be located around 5-10 AU. One star has 70 micron emission but no IRS excess. In this case, the emitting region must begin outside 10 AU; this star has a known radial velocity planet. Only two stars of the five show emission shortward of 25 \micron where spectral features reveal the presence of a population of small, hot dust grains emitting in the 7-20 μ\mum band. The data presented here strengthen the results of previous studies to show that excesses at 25 \micron and shorter are rare: only 1 star out of 40 stars older than 1 Gyr or 2.5\sim 2.5% shows an excess. Asteroid belts 10-30 times more massive than our own appear are rare among mature, solar-type stars

    Composition of the L5 Mars Trojans: Neighbors, not Siblings

    Full text link
    Mars is the only terrestrial planet known to have Tro jan (co-orbiting) asteroids, with a confirmed population of at least 4 objects. The origin of these objects is not known; while several have orbits that are stable on solar-system timescales, work by Rivkin et al. (2003) showed they have compositions that suggest separate origins from one another. We have obtained infrared (0.8-2.5 micron) spectroscopy of the two largest L5 Mars Tro jans, and confirm and extend the results of Rivkin et al. (2003). We suggest that the differentiated angrite meteorites are good spectral analogs for 5261 Eureka, the largest Mars Trojan. Meteorite analogs for 101429 1998 VF31 are more varied and include primitive achondrites and mesosiderites.Comment: 14 manuscript pages, 1 table, 6 figures. To be published in Icarus. See companion paper 0709.1921 by Trilling et a

    Spitzer/MIPS Limits on Asteroidal Dust in the Pulsar Planetary System PSR B1257+1

    Get PDF
    With the MIPS camera on Spitzer, we have searched for far-infrared emission from dust in the planetary system orbiting pulsar PSR 1257+12. With accuracies of 0.05 mJy at 24 um and 1.5 mJy at 70 um, photometric measurements find no evidence for emission at these wavelengths. These observations place new upper limits on the luminosity of dust with temperatures between 20 and 1000 K. They are particularly sensitive to dust temperatures of 100-200 K, for which they limit the dust luminosity to below 3×1053 \times 10^{-5} of the pulsar's spin-down luminosity, three orders of magnitude better than previous limits. Despite these improved constraints on dust emission, an asteroid belt similar to the Solar System's cannot be ruled out

    Debris discs around nearby Solar analogues

    Full text link
    An unbiased search for debris discs around nearby Sun-like stars is reported. Thirteen G-dwarfs at 12-15 parsecs distance were searched at 850 \umum wavelength, and a disc is confirmed around HD 30495. The estimated dust mass is 0.008 M_{\oplus} with a net limit \la 0.0025 M_{\oplus} for the average disc of the other stars. The results suggest there is not a large missed population of substantial cold discs around Sun-like stars -- HD 30495 is a bright rather than unusually cool disc, and may belong to a few hundred Myr-old population of greater dust luminosity. The far-infared and millimetre survey data for Sun-like stars are well fitted by either steady state or stirred models, provided that typical comet belts are comparable in size to that in the Solar System.Comment: published in MNRA
    corecore