2,229 research outputs found
On the relation between the width of the flux tube and in lattice gauge theories
Within the framework of a quantum flux tube model for the interquark
potential it is possible to predict that in (2+1) dimensions the space-like
string tension must increase with the temperature in the deconfined phase and
that the thickness of the flux tube must coincide with the inverse of the
deconfinement temperature. Both these predictions are in good agreement with
some recent numerical simulations of SU(2) and gauge models.Comment: 3 pages, uuencoded .ps file (Proceeding of Lattice '93 Conference
Casimir scaling or flux counting?
Potentials between two static sources in various representations of the SU(3)
gauge group are determined on anisotropic 3+1 dimensional lattices. Strong
evidence in favour of "Casimir scaling" is found.Comment: 4 pages Latex, epscrc2.sty with 2 epsf figure
Bottomonium from NRQCD with Dynamical Wilson Fermions
We present results for the b \bar b spectrum obtained using an
O(M_bv^6)-correct non-relativistic lattice QCD action. Propagators are
evaluated on SESAM's three sets of dynamical gauge configurations generated
with two flavours of Wilson fermions at beta = 5.6. Compared to a quenched
simulation at equivalent lattice spacing we find better agreement of our
dynamical data with experimental results in the spin-independent sector but
observe no unquenching effects in hyperfine-splittings. To pin down the
systematic errors we have also compared quenched results in different
``tadpole'' schemes and used a lower order action.Comment: Talk presented at LATTICE'97, 3 pages, Late
Unquenching effects on the coefficients of the L\"uscher-Weisz action
The effects of unquenching on the perturbative improvement coefficients in
the Symanzik action are computed within the framework of L\"uscher-Weisz
on-shell improvement. We find that the effects of quark loops are surprisingly
large, and their omission may well explain the scaling violations observed in
some unquenched studies.Comment: 7 pages, 5 figures, uses revtex4; version to appear in Phys.Rev.
Adjoint "quarks" on coarse anisotropic lattices: Implications for string breaking in full QCD
A detailed study is made of four dimensional SU(2) gauge theory with static
adjoint ``quarks'' in the context of string breaking. A tadpole-improved action
is used to do simulations on lattices with coarse spatial spacings ,
allowing the static potential to be probed at large separations at a
dramatically reduced computational cost. Highly anisotropic lattices are used,
with fine temporal spacings , in order to assess the behavior of the
time-dependent effective potentials. The lattice spacings are determined from
the potentials for quarks in the fundamental representation. Simulations of the
Wilson loop in the adjoint representation are done, and the energies of
magnetic and electric ``gluelumps'' (adjoint quark-gluon bound states) are
calculated, which set the energy scale for string breaking. Correlators of
gauge-fixed static quark propagators, without a connecting string of spatial
links, are analyzed. Correlation functions of gluelump pairs are also
considered; similar correlators have recently been proposed for observing
string breaking in full QCD and other models. A thorough discussion of the
relevance of Wilson loops over other operators for studies of string breaking
is presented, using the simulation results presented here to support a number
of new arguments.Comment: 22 pages, 14 figure
The Perfect Quark-Gluon Vertex Function
We evaluate a perfect quark-gluon vertex function for QCD in coordinate space
and truncate it to a short range. We present preliminary results for the
charmonium spectrum using this quasi-perfect action.Comment: 3 pages LaTex, 4 figures, poster presented at LATTICE9
Update: Accurate Determinations of alpha_s from Realistic Lattice QCD
We use lattice QCD simulations, with MILC configurations (including vacuum
polarization from u, d, and s quarks), to update our previous determinations of
the QCD coupling constant. Our new analysis uses results from 6 different
lattice spacings and 12 different combinations of sea-quark masses to
significantly reduce our previous errors. We also correct for
finite-lattice-spacing errors in the scale setting, and for nonperturbative
chiral corrections to the 22 short-distance quantities from which we extract
the coupling. Our final result is alpha_V(7.5GeV,nf=3) = 0.2120(28), which is
equivalent to alpha_msbar(M_Z,n_f=5)= 0.1183(8). We compare this with our
previous result, which differs by one standard deviation.Comment: 12 pages, 2 figures, 4 table
Unstable Modes in Three-Dimensional SU(2) Gauge Theory
We investigate SU(2) gauge theory in a constant chromomagnetic field in three
dimensions both in the continuum and on the lattice. Using a variational method
to stabilize the unstable modes, we evaluate the vacuum energy density in the
one-loop approximation. We compare our theoretical results with the outcomes of
the numerical simulations.Comment: 24 pages, REVTEX 3.0, 3 Postscript figures included. (the whole
postscript file (text+figures) is available on request from
[email protected]
Abelian Dominance of Chiral Symmetry Breaking in Lattice QCD
Calculations of the chiral condensate on the lattice using staggered fermions
and the Lanczos algorithm are presented. Four gauge fields are considered: the
quenched non-Abelian field, an Abelian projected field, and monopole and photon
fields further decomposed from the Abelian field. Abelian projection is
performed in maximal Abelian gauge and in Polyakov gauge. The results show that
monopoles in maximal Abelian gauge largely reproduce the chiral condensate
values of the full non-Abelian theory, in both SU(2) and SU(3) color.Comment: 13 pages in RevTex including 6 figures, uucompressed, self-extractin
- …
