58,976 research outputs found
Renormalization group approach to spinor Bose-Fermi mixtures in a shallow optical lattice
We study a mixture of ultracold spin-half fermionic and spin-one bosonic
atoms in a shallow optical lattice where the bosons are coupled to the fermions
via both density-density and spin-spin interactions. We consider the parameter
regime where the bosons are in a superfluid ground state, integrate them out,
and obtain an effective action for the fermions. We carry out a renormalization
group analysis of this effective fermionic action at low temperatures, show
that the presence of the spinor bosons may lead to a separation of Fermi
surfaces of the spin-up and spin-down fermions, and investigate the parameter
range where this phenomenon occurs. We also calculate the susceptibilities
corresponding to the possible superfluid instabilities of the fermions and
obtain their possible broken-symmetry ground states at low temperatures and
weak interactions.Comment: 8 pages, 8 figs v
Remote sensing of sea state by laser altimeters
The reflection of short laser pulses from the ocean surface was analyzed based on the specular point theory of scattering. The expressions for the averaged received signal, shot noise and speckle induced noise were derived for a direct detection system. It is found that the reflected laser pulses have an average shape closely related to the probability density function associated with the surface profile. This result is applied to estimate the mean sea level and significant wave height from the receiver output of the laser altimeter
Microfluidic immunomagnetic multi-target sorting – a model for controlling deflection of paramagnetic beads
We describe a microfluidic system that uses a magnetic field to sort paramagnetic beads by deflecting them in the direction normal to the flow. Our experiments systematically study the dependence of the beads’ deflection on: bead size and susceptibility, magnet strength, fluid speed and viscosity, and device geometry. We also develop a design parameter that can aid in the design of microfluidic devices for immunomagnetic multi-target sorting
Hybridized solid-state qubit in the charge-flux regime
Most superconducting qubits operate in a regime dominated by either the
electrical charge or the magnetic flux. Here we study an intermediate case: a
hybridized charge-flux qubit with a third Josephson junction (JJ) added into
the SQUID loop of the Cooper-pair box. This additional JJ allows the optimal
design of a low-decoherence qubit. Both charge and flux noises are
considered. Moreover, we show that an efficient quantum measurement of either
the current or the charge can be achieved by using different area sizes for the
third JJ.Comment: 7 pages, 5 figures. Phys. Rev. B, in pres
A group-velocity criterion for breakdown of vortex flow: An application to measured inlet profiles
Vortex flows exhibiting breakdown in a slightly divergent duct were measured. The slowly varying vortex flow field downstream of the entrance and upstream of the breakdown region is obtained numerically by using the inviscid quasi-cylindrical approximation. In these calculations, the Faler and Lebovich's experimental data were used as the starting conditions at the entrance of the duct. The group velocity of wave propagation for the axisymmetric mode (n = 0) and the asymmetric modes (n = + or - 1 and n = + or - 2) are calculated for the entrance conditions. For the theoretically predicted slowly varying flow field downstream of the entrance, the wave characteristics of the n = 0 and n = + or - 1 modes are presented. It was concluded that the flows which subsequently undergo vortex breakdown are all predicted to be supercritical and stable to infinitesimal inviscid disturbances, including the axially symmetric as well as the nonsymmetric perturbations
An examination of a group-velocity criterion for the breakdown of an idealized vortex flow
The phenomenon of vortex breakdown is believed to be associated with a finite amplitude wave that has become trapped at the critical or breakdown location. The conditions at which the propagating waves become trapped at a certain axial location were examined by use of a group-velocity criterion implied by Landahl's general theory of wave trapping. An ideal vortex having constant vorticity and uniform axial velocity at the inlet of a slowly diverging duct was studied. The linear wave propagation analysis is applied to the base flow at several axial stations for several values of the ratio of swirl velocity to axial velocity at the inlet of the divergent duct, assuming a locally parallel flow. The dipsersion relations and hence the group velocities of both the symmetric (n = 0) and asymmetric modes (n = + or - 1) were investigated. The existence of a critical state in the flow (at which the group velocity vanishes), and its relationship to the stagnation point on the axis of the duct and to the occurrence of an irregular singularity in the equations governing wave propagation in the flow field are discussed
How do Neutrinos Propagate ? - Wave-Packet Treatment of Neutrino Oscillation
The wave-packet treatment of neutrino oscillation developed previously is
extended to the case in which momentum distribution functions are taken to be a
Gaussian form with both central values and dispersions depending on the mass
eigenstates of the neutrinos. It is shown among other things that the velocity
of the neutrino wave packets does not in general agree with what one would
expect classically and that relativistic neutrinos emitted from pions
nevertheless do follow, to a good approximation, the classical trajectory.Comment: 13 page. No figure. Typeset using PTPTeX.st
- …
