6,572 research outputs found

    Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates

    Get PDF
    Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures

    First-principles study on atomic configuration of electron-beam irradiated C60 film

    Get PDF
    Density functional calculations of the atomic configuration of electron-beam irradiated C-60 thin films were implemented. By examining the electronic structure and electron-transport properties of C-60 clusters, we found that a rhombohedral C-60 polymer with sp(3)-bonded dumbbell-shaped connections at the molecule junction is a semiconductor with a narrow band gap. In addition, the polymer changes to exhibit metallic behavior by forming sp(2)-bonded peanut-shaped connections. Conductance below the Fermi level increases and the peak of the conductance spectrum arising from the t(u1) states of the C-60 molecule becomes obscure after the connections are rearranged. The present rhombohedral polymer, including the [2 + 2] four-membered rings and peanut-shaped connections, is a candidate for representing the structure of the metallic C-60 polymer at the initial stage of electron-beam irradiation

    Can we distinguish between black holes and wormholes by their Einstein-ring systems?

    Full text link
    For the last decade, the gravitational lensing in the strong gravitational field has been studied eagerly. It is well known that, for the lensing by a black hole, infinite number of Einstein rings are formed by the light rays which wind around the black hole nearly on the photon sphere, which are called relativistic Einstein rings. This is also the case for the lensing by a wormhole. In this paper, we study the Einstein ring and relativistic Einstein rings for the Schwarzschild black hole and the Ellis wormhole, the latter of which is an example of traversable wormholes of the Morris-Thorne class. Given the configuration of the gravitational lensing and the radii of the Einstein ring and relativistic Einstein rings, we can distinguish between a black hole and a wormhole in principle. We conclude that we can detect the relativistic Einstein rings by wormholes which have the radii of the throat a0.5a\simeq 0.5pc at a galactic center with the distance 10Mpc and which have a10a\simeq 10AU in our galaxy using by the most powerful modern instruments which have the resolution of 10210^{-2}arcsecond such as a 10-meter optical-infrared telescope. The black holes which make the Einstein rings of the same size as the ones by the wormholes are galactic supermassive black holes and the relativistic Einstein rings by the black holes are too small to measure at this moment. We may test some hypotheses of astrophysical wormholes by using the Einstein ring and relativistic Einstein rings in the future.Comment: 13 pages, 2 figures, minor changes from v

    Josephson junction in cobalt-doped BaFe2As2 epitaxial thin films on (La, Sr)(Al, Ta)O3 bicrystal substrates

    Full text link
    Josephson junctions were fabricated in epitaxial films of cobalt-doped BaFe2As2 on [001]-tilt (La,Sr)(Al,Ta)O3 bicrystal substrates. 10m-wide microbridges spanning a 30-degrees-tilted bicrystal grain boundary (BGB bridge) exhibited resistively-shunted-junction (RSJ)-like current-voltage characteristics up to 17 K, and the critical current was suppressed remarkably by a magnetic field. Microbridges without a BGB did not show the RSJ-like behavior, and their critical current densities were 20 times larger than those of BGB bridges, confirming BGB bridges display a Josephson effect originating from weakly-linked BGB

    The spin-incoherent Luttinger liquid

    Get PDF
    In contrast to the well known Fermi liquid theory of three dimensions, interacting one-dimensional and quasi one-dimensional systems of fermions are described at low energy by an effective theory known as Luttinger liquid theory. This theory is expressed in terms of collective many-body excitations that show exotic behavior such as spin-charge separation. Luttinger liquid theory is commonly applied on the premise that "low energy" describes both the spin and charge sectors. However, when the interactions in the system are very strong, as they typically are at low particle densities, the ratio of spin to charge energy may become exponentially small. It is then possible at very low temperatures for the energy to be low compared to the characteristic charge energy, but still high compared to the characteristic spin energy. This energy window of near ground-state charge degrees of freedom, but highly thermally excited spin degrees of freedom is called a spin-incoherent Luttinger liquid. The spin-incoherent Luttinger liquid exhibits a higher degree universality than the Luttinger liquid and its properties are qualitatively distinct. In this colloquium I detail some of the recent theoretical developments in the field and describe experimental indications of such a regime in gated semiconductor quantum wires.Comment: 21 pages, 18 figures. Updated references, corrected typo in Eq.(20) in journal versio

    Electron-Transport Properties of Na Nanowires under Applied Bias Voltages

    Full text link
    We present first-principles calculations on electron transport through Na nanowires at finite bias voltages. The nanowire exhibits a nonlinear current-voltage characteristic and negative differential conductance. The latter is explained by the drastic suppression of the transmission peaks which is attributed to the electron transportability of the negatively biased plinth attached to the end of the nanowire. In addition, the finding that a voltage drop preferentially occurs on the negatively biased side of the nanowire is discussed in relation to the electronic structure and conduction.Comment: 4 pages, 6 figure

    Effect of grain size on thermoelectric properties of n-type nanocrystalline bismuth-telluride based thin films

    Get PDF
    The effect of grain size on the thermoelectric properties of n-type nanocrystalline bismuth-telluridebased thin films is investigated. We prepare the nanocrystalline thin films with average grain sizesof 10, 27, and 60 nm by a flash-evaporation method followed by a hydrogen annealing process. Thethermoelectric properties, in terms of the thermal conductivity by a differential 3 method, theelectrical conductivity, and the Seebeck coefficient are measured at room temperature and used toevaluate the figure of merit. The minimum thermal conductivity is 0.61 W m−1 K−1 at the averagegrain size of 10 nm. We also estimate the lattice thermal conductivity of the nanocrystalline thinfilms and compare it with a simplified theory of phonon scattering on grain boundaries. Fornanosized grains, the lattice thermal conductivity of nanocrystalline thin films decreases rapidly forsmaller grains, corresponding to the theoretical calculation. The figure of merit is also decreased asthe grain size decreases, which is attributed to the increased number of defects at the grainboundaries

    Magnetic Excitations in the Spin-1 Anisotropic Heisenberg Antiferromagnetic Chain System NiCl2_2-4SC(NH2_2)2_2

    Full text link
    NiCl2_2-4SC(NH2_2)2_2 (DTN) is a quantum S=1 chain system with strong easy-pane anisotropy and a new candidate for the Bose-Einstein condensation of the spin degrees of freedom. ESR studies of magnetic excitations in DTN in fields up to 25 T are presented. Based on analysis of the single-magnon excitation mode in the high-field spin-polarized phase and previous experimental results [Phys. Rev. Lett. 96, 077204 (2006)], a revised set of spin-Hamiltonian parameters is obtained. Our results yield D=8.9D=8.9 K, Jc=2.2J_c=2.2 K, and Ja,b=0.18J_{a,b}=0.18 K for the anisotropy, intrachain, and interchain exchange interactions, respectively. These values are used to calculate the antiferromagnetic phase boundary, magnetization and the frequency-field dependence of two-magnon bound-state excitations predicted by theory and observed in DTN for the first time. Excellent quantitative agreement with experimental data is obtained
    corecore