355 research outputs found

    Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002-2011: SD-WACCM simulations compared to GOMOS observations

    Get PDF
    Most of our understanding of the atmosphere is based on observations and their comparison with model simulations. In middle atmosphere studies it is common practice to use an approach, where the model dynamics are at least partly based on temperature and wind fields from an external meteorological model. In this work we test how closely satellite measurements of a few central trace gases agree with this kind of model simulation. We use collocated vertical profiles where each satellite measurement is compared to the closest model data. We compare profiles and distributions of O3, NO2 and NO3 from the Global Ozone Monitoring by Occultation of Stars instrument (GOMOS) on the Envisat satellite with simulations by the Whole Atmosphere Community Climate Model (WACCM). GOMOS measurements are from nighttime. Our comparisons show that in the stratosphere outside the polar regions differences in ozone between WACCM and GOMOS are small, between 0 and 6%. The correlation of 5-day time series show a very high 0.9-0.95. In the tropical region 10° S-10° N below 10hPa WACCM values are up to 20% larger than GOMOS. In the Arctic below 6 hPa WACCM ozone values are up to 20% larger than GOMOS. In the mesosphere between 0.04 and 1hPa the WACCM is at most 20% smaller than GOMOS. Above the ozone minimum at 0.01hPa (or 80km) large differences are found between WACCM and GOMOS. The correlation can still be high, but at the second ozone peak the correlation falls strongly and the ozone abundance from WACCM is about 60% smaller than that from GOMOS. The total ozone columns (above 50hPa) of GOMOS and WACCM agree within ±2% except in the Arctic where WACCM is 10% larger than GOMOS. Outside the polar areas and in the validity region of GOMOS NO2 measurements (0.3-37 hPa) WACCM and GOMOS NO2 agree within -5 to +25% and the correlation is high (0.7-0.95) except in the upper stratosphere at the southern latitudes. In the polar areas, where solar particle precipitation and downward transport from the thermosphere enhance NO2 abundance, large differences up to -90% are found between WACCM and GOMOS NO2 and the correlation varies between 0.3 and 0.9. For NO3, we find that the WACCM and GOMOS difference is between -20 and 5% with a very high correlation of 0.7-0.95. We show that NO3 values strongly depend on temperature and the dependency can be fitted by the exponential function of temperature. The ratio of NO3 to O3 from WACCM and GOMOS closely follow the prediction from the equilibrium chemical theory. Abrupt temperature increases from sudden stratospheric warmings (SSWs) are reflected as sudden enhancements of WACCM and GOMOS NO3 values

    Likelihood informed dimension reduction for inverse problems in remote sensing of atmospheric constituent profiles

    Full text link
    We use likelihood informed dimension reduction (LIS) (T. Cui et al. 2014) for inverting vertical profile information of atmospheric methane from ground based Fourier transform infrared (FTIR) measurements at Sodankyl\"a, Northern Finland. The measurements belong to the word wide TCCON network for greenhouse gas measurements and, in addition to providing accurate greenhouse gas measurements, they are important for validating satellite observations. LIS allows construction of an efficient Markov chain Monte Carlo sampling algorithm that explores only a reduced dimensional space but still produces a good approximation of the original full dimensional Bayesian posterior distribution. This in effect makes the statistical estimation problem independent of the discretization of the inverse problem. In addition, we compare LIS to a dimension reduction method based on prior covariance matrix truncation used earlier (S. Tukiainen et al. 2016)

    Retrieval of ozone profiles from GOMOS limb scattered measurements

    Get PDF
    The GOMOS (Global Ozone Monitoring by Occultation of Stars) instrument on board the Envisat satellite measures the vertical composition of the atmosphere using the stellar occultation technique. While the night-time occultations of GOMOS have been proven to be of good quality, the daytime occultations are more challenging due to weaker signal-to-noise ratio. During daytime GOMOS measures limb scattered solar radiation in addition to stellar radiation. In this paper we introduce a retrieval method that determines ozone profiles between 20–60 km from GOMOS limb scattered solar radiances. GOMOS observations contain a considerable amount of stray light at high altitudes. We introduce a method for removing stray light and demonstrate its feasibility by comparing the corrected radiances against those measured by the OSIRIS (Optical Spectrograph & Infra Red Imaging System) instrument. For the retrieval of ozone profiles, a standard onion peeling method is used. The first comparisons with other data sets suggest that the retrieved ozone profiles in 22–50 km are within 10% compared with the GOMOS night-time occultations and within 15% compared with OSIRIS. GOMOS has measured about 350 000 daytime profiles since 2002. The retrieval method presented here makes this large amount of data available for scientific use

    Genome-Wide Association Study Implicates Atrial Natriuretic Peptide Rather Than B-Type Natriuretic Peptide in the Regulation of Blood Pressure in the General Population

    Get PDF
    Background Cardiomyocytes secrete atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in response to mechanical stretching, making them useful clinical biomarkers of cardiac stress. Both human and animal studies indicate a role for ANP as a regulator of blood pressure with conflicting results for BNP. Methods and Results We used genome-wide association analysis (n=6296) to study the effects of genetic variants on circulating natriuretic peptide concentrations and compared the impact of natriuretic peptide-associated genetic variants on blood pressure (n=27059). Eight independent genetic variants in 2 known (NPPA-NPPB and POC1B-GALNT4) and 1 novel locus (PPP3CC) associated with midregional proANP (MR-proANP), BNP, aminoterminal proBNP (NT-proBNP), or BNP:NT-proBNP ratio. The NPPA-NPPB locus containing the adjacent genes encoding ANP and BNP harbored 4 independent cis variants with effects specific to either midregional proANP or BNP and a rare missense single nucleotide polymorphism in NT-proBNP seriously altering its measurement. Variants near the calcineurin catalytic subunit gamma gene PPP3CC and the polypeptide N-acetylgalactosaminyltransferase 4 gene GALNT4 associated with BNP:NT-proBNP ratio but not with BNP or midregional proANP, suggesting effects on the post-translational regulation of proBNP. Out of the 8 individual variants, only those correlated with midregional proANP had a statistically significant albeit weak impact on blood pressure. The combined effect of these 3 single nucleotide polymorphisms also associated with hypertension risk (P=8.2x10(-4)). Conclusions Common genetic differences affecting the circulating concentration of ANP associated with blood pressure, whereas those affecting BNP did not, highlighting the blood pressure-lowering effect of ANP in the general population.Peer reviewe

    Genome-Wide Association Study Implicates Atrial Natriuretic Peptide Rather Than B-Type Natriuretic Peptide in the Regulation of Blood Pressure in the General Population

    Get PDF
    Background Cardiomyocytes secrete atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in response to mechanical stretching, making them useful clinical biomarkers of cardiac stress. Both human and animal studies indicate a role for ANP as a regulator of blood pressure with conflicting results for BNP. Methods and Results We used genome-wide association analysis (n=6296) to study the effects of genetic variants on circulating natriuretic peptide concentrations and compared the impact of natriuretic peptide-associated genetic variants on blood pressure (n=27059). Eight independent genetic variants in 2 known (NPPA-NPPB and POC1B-GALNT4) and 1 novel locus (PPP3CC) associated with midregional proANP (MR-proANP), BNP, aminoterminal proBNP (NT-proBNP), or BNP:NT-proBNP ratio. The NPPA-NPPB locus containing the adjacent genes encoding ANP and BNP harbored 4 independent cis variants with effects specific to either midregional proANP or BNP and a rare missense single nucleotide polymorphism in NT-proBNP seriously altering its measurement. Variants near the calcineurin catalytic subunit gamma gene PPP3CC and the polypeptide N-acetylgalactosaminyltransferase 4 gene GALNT4 associated with BNP:NT-proBNP ratio but not with BNP or midregional proANP, suggesting effects on the post-translational regulation of proBNP. Out of the 8 individual variants, only those correlated with midregional proANP had a statistically significant albeit weak impact on blood pressure. The combined effect of these 3 single nucleotide polymorphisms also associated with hypertension risk (P=8.2x10(-4)). Conclusions Common genetic differences affecting the circulating concentration of ANP associated with blood pressure, whereas those affecting BNP did not, highlighting the blood pressure-lowering effect of ANP in the general population.Peer reviewe

    Fidelity of dynamical maps

    Get PDF
    We introduce the concept of fidelity for dynamical maps in an open quantum system scenario. We derive an inequality linking this quantity to the distinguishability of the inducing environmental states. Our inequality imposes constraints on the allowed set of dynamical maps arising from the microscopic description of system plus environment. Remarkably, the inequality involves only the states of the environment and the dynamical map of the open system and, therefore, does not rely on the knowledge of either the microscopic interaction Hamiltonian or the environmental Hamiltonian characteristic parameters. We demonstrate the power of our result by applying it to two different scenarios: quantum programming and quantum probing. In the first case, we use it to derive bounds on the dimension of the processor for approximate programming of unitaries. In the second case we present an intriguing proof-of-principle demonstration of the ability to extract information on the environment via a quantum probe without any a priori assumption on the form of the system-environment coupling Hamiltonian

    Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA

    No full text
    Genome-wide association studies have identified numerous loci linked with complex diseases, for which the molecular mechanisms remain largely unclear. Comprehensive molecular profiling of circulating metabolites captures highly heritable traits, which can help to uncover metabolic pathophysiology underlying established disease variants. We conduct an extended genome-wide association study of genetic influences on 123 circulating metabolic traits quantified by nuclear magnetic resonance metabolomics from up to 24,925 individuals and identify eight novel loci for amino acids, pyruvate and fatty acids. The LPA locus link with cardiovascular risk exemplifies how detailed metabolic profiling may inform underlying aetiology via extensive associations with very-low-density lipoprotein and triglyceride metabolism. Genetic fine mapping and Mendelian randomization uncover wide-spread causal effects of lipoprotein(a) on overall lipoprotein metabolism and we assess potential pleiotropic consequences of genetically elevated lipoprotein(a) on diverse morbidities via electronic health-care records. Our findings strengthen the argument for safe LPA-targeted intervention to reduce cardiovascular risk

    Back Reflector with Diffractive Gratings for Light-Trapping in Thin-Film III-V Solar Cells

    Get PDF
    We report on the development of light-Trapping architectures applied to thin-film solar cells. In particular, we focus on enhancing the absorption at 1-eV spectral range for dilute nitride and quantum dot materials and report on the influence of planar back reflectors on the photovoltaic properties. Moreover, we discuss the properties of polymer diffraction gratings with enhanced light-Trapping capability pointing to advantageous properties of pyramidal gratings. In order to understand the suitability of these polymer grating architectures for space applications, we have performed an electron irradiation study (1 MeV) revealing the absence of reflectance changes up to doses of 1×1015 e-/cm

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit
    corecore