1,014 research outputs found

    What is the best way to manage GERD symptoms in the elderly?

    Get PDF
    No evidence supports one method over another in managing uncomplicated gastroesophageal reflux disease (GERD) for patients aged >65 years. For those with endoscopically documented esophagitis, proton pump inhibitors (PPIs) relieve symptoms faster than histamine H2 receptor antagonists (H2RAs) (strength of recommendation [SOR]: B, extrapolation from randomized controlled trials [RCTs]). Treating elderly patients with pantoprazole (Protonix) after resolution of acute esophagitis results in fewer relapses than with placebo (SOR: B, double-blind RCT). Limited evidence suggests that such maintenance therapy for prior esophagitis with either H2RAs or PPIs, at half- and full-dose strength, decreases the frequency of relapse (SOR: B, extrapolation from uncontrolled clinical trial)

    Full-sky ray-tracing simulation of weak lensing using ELUCID simulations: exploring galaxy intrinsic alignment and cosmic shear correlations

    Full text link
    The intrinsic alignment of galaxies is an important systematic effect in weak-lensing surveys, which can affect the derived cosmological parameters. One direct way to distinguish different alignment models and quantify their effects on the measurement is to produce mocked weak-lensing surveys. In this work, we use full-sky ray-tracing technique to produce mock images of galaxies from the ELUCID NN-body simulation run with the WMAP9 cosmology. In our model we assume that the shape of central elliptical galaxy follows that of the dark matter halo, and spiral galaxy follows the halo spin. Using the mocked galaxy images, a combination of galaxy intrinsic shape and the gravitational shear, we compare the predicted tomographic shear correlations to the results of KiDS and DLS. It is found that our predictions stay between the KiDS and DLS results. We rule out a model in which the satellite galaxies are radially aligned with the center galaxy, otherwise the shear-correlations on small scales are too high. Most important, we find that although the intrinsic alignment of spiral galaxies is very weak, they induce a positive correlation between the gravitational shear signal and the intrinsic galaxy orientation (GI). This is because the spiral galaxy is tangentially aligned with the nearby large-scale overdensity, contrary to the radial alignment of elliptical galaxy. Our results explain the origin of detected positive GI term from the weak-lensing surveys. We conclude that in future analysis, the GI model must include the dependence on galaxy types in more detail.Comment: 23 pages, 13 figures, published in ApJ. Our mock galaxy catalog is available upon request by email to the author ([email protected], [email protected]

    Promising New Assays and Technologies for the Diagnosis and Management of Infectious Diseases

    Get PDF
    Recent advancements in technology have led to the development of new techniques that hold promise for improved diagnosis and management of infectious diseases. Here, we review new assays that help better identify pathogens and tailor antibiotic therapy to patients' need

    How is a Child\u27s Perception of Self Affected by Retention?

    Get PDF
    The purpose of this study was to inform educators of the impact of grade retention on a child\u27s perception of self, and to provide recommendations and practical applications for educators in the future. Although the long-term effects of grade retention are still unclear, the number of students being retained annually is steadily on the rise. Conflicting beliefs about the advantages and disadvantages of the retention experience make it difficult to clearly predict which students will benefit from being retained. A large body of research reports the impact of grade retention on scholastic achievement. As retention has usually been considered to remediate academic difficulties, the effectiveness of retention is logically studied in terms of academic performance. However, because educators recognize the importance of affective variables, it is equally important to assess the effectiveness of retention in terms of self-perceptions and engagement at school. The focus of this inquiry was to explore the effects of retention as reported by twelve 5th and 6th grade students who had been retained. Because logical and theoretical arguments have been made for the negative effects of retention on a child\u27s self-image, this study examined the self-esteem of retained students. Research techniques included open-ended questions and interviews, using Patton\u27s qualitative interview guide approach. From the findings, the investigator reached the following conclusions: (a) for the participants in this study, being retained was not detrimental to their perceptions of self; (b) all participants perceived others to like them well; in fact, 5 of the 12 reported that others liked them better following their retention experiences; and (c) all students in this study believed that retention helped them to do better in school

    ELUCID IV: Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias

    Full text link
    We examine the quenched fraction of central and satellite galaxies as a function of galaxy stellar mass, halo mass, and the matter density of their large scale environment. Matter densities are inferred from our ELUCID simulation, a constrained simulation of local Universe sampled by SDSS, while halo masses and central/satellite classification are taken from the galaxy group catalog of Yang et al. The quenched fraction for the total population increases systematically with the three quantities. We find that the `environmental quenching efficiency', which quantifies the quenched fraction as function of halo mass, is independent of stellar mass. And this independence is the origin of the stellar mass-independence of density-based quenching efficiency, found in previous studies. Considering centrals and satellites separately, we find that the two populations follow similar correlations of quenching efficiency with halo mass and stellar mass, suggesting that they have experienced similar quenching processes in their host halo. We demonstrate that satellite quenching alone cannot account for the environmental quenching efficiency of the total galaxy population and the difference between the two populations found previously mainly arises from the fact that centrals and satellites of the same stellar mass reside, on average, in halos of different mass. After removing these halo-mass and stellar-mass effects, there remains a weak, but significant, residual dependence on environmental density, which is eliminated when halo assembly bias is taken into account. Our results therefore indicate that halo mass is the prime environmental parameter that regulates the quenching of both centrals and satellites.Comment: 21 pages, 16 figures, submitted to Ap

    Ten Years of Experience Training Non-Physician Anesthesia Providers in Haiti.

    Get PDF
    Surgery is increasingly recognized as an effective means of treating a proportion of the global burden of disease, especially in resource-limited countries. Often non-physicians, such as nurses, provide the majority of anesthesia; however, their training and formal supervision is often of low priority or even non-existent. To increase the number of safe anesthesia providers in Haiti, Médecins Sans Frontières has trained nurse anesthetists (NAs) for over 10 years. This article describes the challenges, outcomes, and future directions of this training program. From 1998 to 2008, 24 students graduated. Nineteen (79%) continue to work as NAs in Haiti and 5 (21%) have emigrated. In 2008, NAs were critical in providing anesthesia during a post-hurricane emergency where they performed 330 procedures. Mortality was 0.3% and not associated with lack of anesthesiologist supervision. The completion rate of this training program was high and the majority of graduates continue to work as nurse anesthetists in Haiti. Successful training requires a setting with a sufficient volume and diversity of operations, appropriate anesthesia equipment, a structured and comprehensive training program, and recognition of the training program by the national ministry of health and relevant professional bodies. Preliminary outcomes support findings elsewhere that NAs can be a safe and effective alternative where anesthesiologists are scarce. Training non-physician anesthetists is a feasible and important way to scale up surgical services resource limited settings

    Imprints of dark energy on cosmic structure formation: II) Non-Universality of the halo mass function

    Full text link
    The universality of the halo mass function is investigated in the context of dark energy cosmologies. This widely used approximation assumes that the mass function can be expressed as a function of the matter density omega_m and the rms linear density fluctuation sigma only, with no explicit dependence on the properties of dark energy or redshift. In order to test this hypothesis we run a series of 15 high-resolution N-body simulations for different cosmological models. These consists of three LCDM cosmologies best fitting WMAP-1, 3 and 5 years data, and three toy-models characterized by a Ratra-Peebles quintessence potential with different slopes and amounts of dark energy density. These toy models have very different evolutionary histories at the background and linear level, but share the same sigma8 value. For each of these models we measure the mass function from catalogues of halos identified in the simulations using the Friend-of-Friend (FoF) algorithm. We find redshift dependent deviations from a universal behaviour, well above numerical uncertainties and of non-stochastic origin, which are correlated with the linear growth factor of the investigated cosmologies. Using the spherical collapse as guidance, we show that such deviations are caused by the cosmology dependence of the non-linear collapse and virialization process. For practical applications, we provide a fitting formula of the mass function accurate to 5 percents over the all range of investigated cosmologies. We also derive an empirical relation between the FoF linking parameter and the virial overdensity which can account for most of the deviations from an exact universal behavior. Overall these results suggest that the halo mass function contains unique cosmological information since it carries a fossil record of the past cosmic evolution.Comment: 21 pages, 19 figures, 5 tables, published in MNRAS. Paper I: arXiv:0903.549

    Direct isotopic evidence of biogenic methane production and efflux from beneath a temperate glacier

    Get PDF
    The base of glaciers and ice sheets provide environments suitable for the production of methane. High pressure conditions beneath the impermeable ‘cap’ of overlying ice promote entrapment of methane reserves that can be released to the atmosphere during ice thinning and meltwater evacuation. However, contemporary glaciers and ice sheets are rarely accounted for as methane contributors through field measurements. Here, we present direct field-based evidence of methane production and release from beneath the Icelandic glacier Sólheimajökull, where geothermal activity creates sub-oxic conditions suited to methane production and preservation along the meltwater flow path. Methane production at the glacier bed (48 tonnes per day, or 39 mM CH4 m−2 day−1), and evasion to the atmosphere from the proglacial stream (41 tonnes per day, or 32 M CH4 m−2 day−1) indicates considerable production and release to the atmosphere during the summer melt season. Isotopic signatures (−60.2‰ to −7.6‰ for δ13CCH4 and −324.3‰ to +161.1‰ for DCH4), support a biogenic signature within waters emerging from the subglacial environment. Temperate glacial methane production and release may thus be a significant and hitherto unresolved contributor of a potent greenhouse gas to the atmosphere

    Verification and Validation: High Charge and Energy (HZE) Transport Codes and Future Development

    Get PDF
    In the present paper, we give the formalism for further developing a fully three-dimensional HZETRN code using marching procedures but also development of a new Green's function code is discussed. The final Green's function code is capable of not only validation in the space environment but also in ground based laboratories with directed beams of ions of specific energy and characterized with detailed diagnostic particle spectrometer devices. Special emphasis is given to verification of the computational procedures and validation of the resultant computational model using laboratory and spaceflight measurements. Due to historical requirements, two parallel development paths for computational model implementation using marching procedures and Green s function techniques are followed. A new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is under development. Validation of computational models at this time is particularly important for President Bush s Initiative to develop infrastructure for human exploration with first target demonstration of the Crew Exploration Vehicle (CEV) in low Earth orbit in 2008
    corecore