9,544 research outputs found
On the problem of mass-dependence of the two-point function of the real scalar free massive field on the light cone
We investigate the generally assumed inconsistency in light cone quantum
field theory that the restriction of a massive, real, scalar, free field to the
nullplane is independent of mass \cite{LKS}, but the
restriction of the two-point function depends on it (see, e.g., \cite{NakYam77,
Yam97}). We resolve this inconsistency by showing that the two-point function
has no canonical restriction to in the sense of distribution theory.
Only the so-called tame restriction of the two-point function exists which we
have introduced in \cite{Ull04sub}. Furthermore, we show that this tame
restriction is indeed independent of mass. Hence the inconsistency appears only
by the erroneous assumption that the two-point function would have a
(canonical) restriction to .Comment: 10 pages, 2 figure
Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile “Ferrovum”
Indexación: Web of Science. Scopus.Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus "Ferrovurn" are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of "Ferrovurn" has proven to be extremely difficult and has so far only been successful for the designated type strain-Ferrovum myxofaciens" P3G. In this study, the genomes of two novel strains of "Ferrovurn" (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of "Ferrovum" sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three "Ferrovum" species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the "F myxofaciens" strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed diversification.http://journal.frontiersin.org/article/10.3389/fmicb.2016.00797/ful
Electronic correlations in double ionization of atoms in pump-probe experiments
The ionization dynamics of a two-electron atom in an attosecond XUV-infrared
pump-probe experiment is simulated by solving the time-dependent two-electron
Schr\"odinger equation. A dramatic change of the double ionization (DI) yield
with variation of the pump-probe delay is reported and the governing role of
electron-electron correlations is shown. The results allow for a direct control
of the DI yield and of the relative strength of double and single ionization
Aggregation and Sedimentation of Thalassiosira weissflogii (diatom) in a Warmer and More Acidified Future Ocean
© The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 9 (2014): e112379, doi:10.1575/1912/6845.Increasing Transparent Exopolymer Particle (TEP) formation during diatom blooms as a result of elevated temperature and pCO2 have been suggested to result in enhanced aggregation and carbon flux, therewith potentially increasing the sequestration of carbon by the ocean. We present experimental results on TEP and aggregate formation by Thalassiosira weissflogii (diatom) in the presence or absence of bacteria under two temperature and three pCO2 scenarios. During the aggregation phase of the experiment TEP formation was elevated at the higher temperature (20°C vs. 15°C), as predicted. However, in contrast to expectations based on the established relationship between TEP and aggregation, aggregation rates and sinking velocity of aggregates were depressed in warmer treatments, especially under ocean acidification conditions. If our experimental findings can be extrapolated to natural conditions, they would imply a reduction in carbon flux and potentially reduced carbon sequestration after diatom blooms in the future ocean.This work was supported by National Science Foundation grants OCE-0926711 & OCE-1041038 to UP and Helmholtz Graduate School for Polar and Marine Research and Jacobs University Bremen to SS
C in intense femtosecond laser pulses: nonlinear dipole response and ionization
We study the interaction of strong femtosecond laser pulses with the C
molecule employing time-dependent density functional theory with the ionic
background treated in a jellium approximation. The laser intensities considered
are below the threshold of strong fragmentation but too high for perturbative
treatments such as linear response. The nonlinear response of the model to
excitations by short pulses of frequencies up to 45eV is presented and analyzed
with the help of Kohn-Sham orbital resolved dipole spectra. In femtosecond
laser pulses of 800nm wavelength ionization is found to occur multiphoton-like
rather than via excitation of a ``giant'' resonance.Comment: 14 pages, including 1 table, 5 figure
A two-dimensional, two-electron model atom in a laser pulse: exact treatment, single active electron-analysis, time-dependent density functional theory, classical calculations, and non-sequential ionization
Owing to its numerical simplicity, a two-dimensional two-electron model atom,
with each electron moving in one direction, is an ideal system to study
non-perturbatively a fully correlated atom exposed to a laser field. Frequently
made assumptions, such as the ``single active electron''- approach and
calculational approximations, e.g. time dependent density functional theory or
(semi-) classical techniques, can be tested. In this paper we examine the
multiphoton short pulse-regime. We observe ``non-sequential'' ionization, i.e.\
double ionization at lower field strengths as expected from a sequential,
single active electron-point of view. Since we find non-sequential ionization
also in purely classical simulations, we are able to clarify the mechanism
behind this effect in terms of single particle trajectories. PACS Number(s):
32.80.RmComment: 10 pages, 16 figures (gzipped postscript), see also
http://www.physik.tu-darmstadt.de/tqe
- …
