42 research outputs found

    Hyperthermia and Thermosensitive Liposomes for Improved Delivery of Chemotherapeutic Drugs to Solid Tumors

    Get PDF
    Lipid-based nanocarriers or liposomes have been proven successful in the delivery of chemotherapeutic agents and are currently applied clinically in the treatment of various types of cancer. Liposomes offer the advantage of a high drug payload, decreased drug toxicity and enhanced drug accumulation at tumor sites. Increased accumulation is due to the relatively leaky tumor vasculature that allows liposome extravasation. Between different types of tumors and even within one tumor, vascular permeability and thus liposome extravasation may differ greatly. Furthermore, upon accumulation of liposomes in the tumor area, drug bioavailability is not guaranteed. At present, these are the major issues for clinically used liposomal drugs

    Characterization of 9-Nitrocamptothecin Liposomes: Anticancer Properties and Mechanisms on Hepatocellular Carcinoma In Vitro and In Vivo

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) is the third most common cause of cancer related mortality worldwide. 9-Nitrocamptothecin (9NC) is a potent topoisomerase-I inhibitor with strong anticancer effect. To increase the solubility and stability, we synthesized a novel 9NC loaded liposomes (9NC-LP) via incorporating 9NC into liposomes. In the present study, we determined the effects of 9NC and 9NC-LP on in vitro and in vivo, and the underlying mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We first analyzed the characteristics of 9NC-LP. Then we compared the effects of 9NC and 9NC-LP on the proliferation and apoptosis of HepG2, Bel-7402, Hep3B and L02 cells in vitro. We also investigated their anticancer properties in nude mice bearing HCC xenograft in vivo. 9NC-LP has a uniform size (around 190 nm) and zeta potential (∼-11 mV), and exhibited a steady sustained-release pattern profile in vitro. Both 9NC and 9NC-LP could cause cell cycle arrest and apoptosis in a dose-dependent and p53-dependent manner. However, this effect was not ubiquitous in all cell lines. Exposure to 9NC-LP led to increased expression of p53, p21, p27, Bax, caspase-3, caspase-8, caspase-9 and apoptosis-inducing factor, mitochondrion-associated 1 and decreased expression of Bcl-2, cyclin E, cyclin A, Cdk2 and cyclin D1. Furthermore, 9NC-LP exhibited a more potent antiproliferative effect and less side effects in vivo. Western blot analysis of the xenograft tumors in nude mice showed similar changes in protein expression in vivo. CONCLUSIONS/SIGNIFICANCE: In conclusion, 9NC and 9NC-LP can inhibit HCC growth via cell cycle arrest and induction of apoptosis. 9NC-LP has a more potent anti-tumor effect and fewer side effects in vivo, which means it is a promising reagent for cancer therapy via intravenous administration

    PrtT-Regulated Proteins Secreted by Aspergillus fumigatus Activate MAPK Signaling in Exposed A549 Lung Cells Leading to Necrotic Cell Death

    Get PDF
    Aspergillus fumigatus is the most commonly encountered mold pathogen of humans, predominantly infecting the respiratory system. Colonization and penetration of the lung alveolar epithelium is a key but poorly understood step in the infection process. This study focused on identifying the transcriptional and cell-signaling responses activated in A549 alveolar carcinoma cells incubated in the presence of A. fumigatus wild-type and ΔPrtT protease-deficient germinating conidia and culture filtrates (CF). Microarray analysis of exposed A549 cells identified distinct classes of genes whose expression is altered in the presence of germinating conidia and CF and suggested the involvement of both NFkB and MAPK signaling pathways in mediating the cellular response. Phosphoprotein analysis of A549 cells confirmed that JNK and ERK1/2 are phosphorylated in response to CF from wild-type A. fumigatus and not phosphorylated in response to CF from the ΔPrtT protease-deficient strain. Inhibition of JNK or ERK1/2 kinase activity substantially decreased CF-induced cell damage, including cell peeling, actin-cytoskeleton damage, and reduction in metabolic activity and necrotic death. These results suggest that inhibition of MAPK-mediated host responses to treatment with A. fumigatus CF decreases cellular damage, a finding with possible clinical implications

    Gold nanoparticles as radiation sensitizers in cancer therapy

    No full text
    Among other nanoparticle systems, gold nanoparticles have been explored as radiosensitizers. While most of the research in this area has focused on either gold nanoparticles with diameters of less than 2 nm or particles with micrometer dimensions, it has been shown that nanoparticles 50 nm in diameter have the highest cellular uptake. We present the results of in vitro studies that focus on the radiosensitization properties of nanoparticles in the size range from 1474 nm. Radiosensitization was dependent on the number of gold nanoparticles internalized within the cells. Gold nanoparticles 50-nm in diameter showed the highest radiosensitization enhancement factor (REF) (1.43 at 220 kVp) compared to gold nanoparticles of 14 and 74 nm (1.20 and 1.26, respectively). Using 50-nm gold nanoparticles, the REF for lower-(105 kVp) and higher-(6 MVp) energy photons was 1.66 and 1.17, respectively. DNA double-strand breaks were quantified using radiation-induced foci of γ-H2AX and 53BP1, and a modest increase in the number of foci per nucleus was observed in irradiated cell populations with internalized gold nanoparticles. The outcome of this research will enable the optimization of gold nanoparticle-based sensitizers for use in therapy.</p
    corecore