895 research outputs found

    Chiral gravity in higher dimensions

    Full text link
    We construct a chiral theory of gravity in 7 and 8 dimensions, which are equivalent to Einstein-Cartan theory using less variables. In these dimensions, we can construct such higher dimensional chiral gravity because of the existence of gravitational instanton. The octonionic-valued variables in the theory represent the deviation from the gravitational instanton, and from their non-associativity, prevents the theory to be SO(n) gauge invariant. Still the chiral gravity holds G_2 (7-D), and Spin(7) (8-D) gauge symmetry.Comment: 18 pages, no figures. Minor typos corrected. Updated reference

    Wet and dry deposition of mineral dust particles in Japan: factors related to temporal variation and spatial distribution

    Get PDF
    Recent ground networks and satellite remote-sensing observations have provided useful data related to spatial and vertical distributions of mineral dust particles in the atmosphere. However, measurements of temporal variations and spatial distributions of mineral dust deposition fluxes are limited in terms of their duration, location, and processes of deposition. To ascertain temporal variations and spatial distributions of mineral dust deposition using wet and dry processes, weekly deposition samples were obtained at Sapporo, Toyama, Nagoya, Tottori, Fukuoka, and Cape Hedo (Okinawa) in Japan during October 2008–December 2010 using automatic wet and dry separating samplers. Mineral dust weights in water-insoluble residue were estimated from Fe contents measured using an X-ray fluorescence analyser. Wet and dry deposition fluxes of mineral dusts were both high in spring and low in summer, showing similar seasonal variations to frequency of aeolian dust events (Kosa) in Japan. For wet deposition, highest and lowest annual dust fluxes were found at Toyama (9.6 g m<sup>−2</sup> yr<sup>−1</sup>) and at Cape Hedo (1.7 g m<sup>−2</sup> yr<sup>−1</sup>) as average values in 2009 and 2010. Higher wet deposition fluxes were observed at Toyama and Tottori, where frequent precipitation (> 60% days per month) was observed during dusty seasons. For dry deposition among Toyama, Tottori, Fukuoka, and Cape Hedo, the highest and lowest annual dust fluxes were found respectively at Fukuoka (5.2 g m<sup>−2</sup> yr<sup>−1</sup>) and at Cape Hedo (2.0 g m<sup>−2</sup> yr<sup>−1</sup>) as average values in 2009 and 2010. The average ratio of wet and dry deposition fluxes was the highest at Toyama (3.3) and the lowest at Hedo (0.82), showing a larger contribution of the dry process at western sites, probably because of the distance from desert source regions and because of the effectiveness of the wet process in the dusty season. <br><br> Size distributions of refractory dust particles were obtained using four-stage filtration: > 20, > 10, > 5, and > 1 μm diameter. Weight fractions of the sum of > 20 μm and 10–20 μm (giant fraction) were higher than 50% for most of the event samples. Irrespective of the deposition type, the giant dust fractions generally decreased with increasing distance from the source area, suggesting the selective depletion of larger giant particles during atmospheric transport. Based on temporal variations of PM<sub>c</sub> (2.5 < <i>D</i> < 10 μm), ground-based lidar, backward air trajectories, and vertical profiles of potential temperatures, transport processes of dust particles are discussed for events with high-deposition and low-deposition flux with high PM<sub>c</sub>. Low dry dust depositions with high PM<sub>c</sub> concentrations were observed under stronger (5 K km<sup>−1</sup>) stratification of potential temperature with thinner and lower (< 2 km) dust distributions because the PM<sub>c</sub> fraction of dust particles only survived after depletion of giant dust particles by rapid gravitational settling at the time they reach Japan. In contrast, transport through a thicker (> 2 km) dust layer with weak vertical gradient of potential temperature carry more giant dust particles to Japan. Because giant dust particles are an important mass fraction of dust accumulation, especially in the North Pacific, which is known as a high-nutrient, low-chlorophyll (HNLC) region, the transport height and fraction of giant dust particles are important factors for studying dust budgets in the atmosphere and their role in biogeochemical cycles

    Anti-prion drug mPPIg5 inhibits PrP(C) conversion to PrP(Sc).

    Get PDF
    Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The 'protein only hypothesis' advocates that PrP(Sc), an abnormal isoform of the cellular protein PrP(C), is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrP(Sc) in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrP(C) to PrP(Sc) conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future

    The side chain of glutamine 13 is the acyl-donor amino acid modified by type 2 transglutaminase in subunit T of the native rabbit skeletal muscle troponin complex.

    Get PDF
    Subunit T of the native muscle troponin complex is a recognised substrate of transglutaminase both in vitro and in situ with formation of isopeptide bonds. Using a proteomic approach, we have now determined the precise site of in vitro labelling of the protein. A preparation of troponin purified from ether powder from mixed rabbit skeletal muscles was employed as transglutaminase substrate. The only isoform TnT2F present in our preparation was recognised as acyl-substrate by human type 2 transglutaminase which specifically modified glutamine 13 in the N-terminal region. During the reaction, the troponin protein complex was polymerized. Results are discussed in relation to the structure of the troponin T subunit, in the light of the role of troponins in skeletal and cardiac muscle diseases, and to the rules governing glutamine side chain selection by tissue transglutaminase

    SCAR knockouts in Dictyostelium: WASP assumes SCAR's position and upstream regulators in pseudopods

    Get PDF
    Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott–Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR’s regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms

    A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal

    Get PDF
    Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal

    Measurement of inositol 1,4,5-trisphosphate in living cells using an improved set of resonance energy transfer-based biosensors

    Get PDF
    Improved versions of inositol-1,4,5-trisphosphate (InsP3) sensors were created to follow intracellular InsP3 changes in single living cells and in cell populations. Similar to previous InsP3 sensors the new sensors are based on the ligand binding domain of the human type-I InsP3 receptor (InsP3R-LBD), but contain a mutation of either R265K or R269K to lower their InsP3 binding affinity. Tagging the InsP3R-LBD with N-terminal Cerulean and C-terminal Venus allowed measurement of Ins P3 in single-cell FRET experiments. Replacing Cerulean with a Luciferase enzyme allowed experiments in multi-cell format by measuring the change in the BRET signal upon stimulation. These sensors faithfully followed the agonist-induced increase in InsP3 concentration in HEK 293T cells expressing the Gq-coupled AT1 angiotensin receptor detecting a response to agonist concentration as low as 10 pmol/L. Compared to the wild type InsP3 sensor, the mutant sensors showed an improved off-rate, enabling a more rapid and complete return of the signal to the resting value of InsP3 after termination of M3 muscarinic receptor stimulation by atropine. For parallel measurements of intracellular InsP3 and Ca2+ levels in BRET experiments, the Cameleon D3 Ca2+ sensor was modified by replacing its CFP with luciferase. In these experiments depletion of plasma membrane PtdIns(4,5)P2 resulted in the fall of InsP3 level, followed by the decrease of the Ca2+-signal evoked by the stimulation of the AT1 receptor. In contrast, when type-III PI 4-kinases were inhibited with a high concentration of wortmannin or a more specific inhibitor, A1, the decrease of the Ca2+-signal preceded the fall of InsP3 level indicating an InsP3-, independent, direct regulation of capacitative Ca2+ influx by plasma membrane inositol lipids. Taken together, our results indicate that the improved InsP3 sensor can be used to monitor both the increase and decrease of InsP3 levels in live cells suitable for high-throughput BRET applications. © 2015, Public Library of Science. All rights reserved

    Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection

    No full text
    BACKGROUND Clostridium difficile is the most common cause of infectious diarrhea in hospitalized patients. Recurrences are common after antibiotic therapy. Actoxumab and bezlotoxumab are human monoclonal antibodies against C. difficile toxins A and B, respectively. METHODS We conducted two double-blind, randomized, placebo-controlled, phase 3 trials, MODIFY I and MODIFY II, involving 2655 adults receiving oral standard-of-care antibiotics for primary or recurrent C. difficile infection. Participants received an infusion of bezlotoxumab (10 mg per kilogram of body weight), actoxumab plus bezlotoxumab (10 mg per kilogram each), or placebo; actoxumab alone (10 mg per kilogram) was given in MODIFY I but discontinued after a planned interim analysis. The primary end point was recurrent infection (new episode after initial clinical cure) within 12 weeks after infusion in the modified intention-to-treat population. RESULTS In both trials, the rate of recurrent C. difficile infection was significantly lower with bezlotoxumab alone than with placebo (MODIFY I: 17% [67 of 386] vs. 28% [109 of 395]; adjusted difference, −10.1 percentage points; 95% confidence interval [CI], −15.9 to −4.3; P<0.001; MODIFY II: 16% [62 of 395] vs. 26% [97 of 378]; adjusted difference, −9.9 percentage points; 95% CI, −15.5 to −4.3; P<0.001) and was significantly lower with actoxumab plus bezlotoxumab than with placebo (MODIFY I: 16% [61 of 383] vs. 28% [109 of 395]; adjusted difference, −11.6 percentage points; 95% CI, −17.4 to −5.9; P<0.001; MODIFY II: 15% [58 of 390] vs. 26% [97 of 378]; adjusted difference, −10.7 percentage points; 95% CI, −16.4 to −5.1; P<0.001). In prespecified subgroup analyses (combined data set), rates of recurrent infection were lower in both groups that received bezlotoxumab than in the placebo group in subpopulations at high risk for recurrent infection or for an adverse outcome. The rates of initial clinical cure were 80% with bezlotoxumab alone, 73% with actoxumab plus bezlotoxumab, and 80% with placebo; the rates of sustained cure (initial clinical cure without recurrent infection in 12 weeks) were 64%, 58%, and 54%, respectively. The rates of adverse events were similar among these groups; the most common events were diarrhea and nausea. CONCLUSIONS Among participants receiving antibiotic treatment for primary or recurrent C. difficile infection, bezlotoxumab was associated with a substantially lower rate of recurrent infection than placebo and had a safety profile similar to that of placebo. The addition of actoxumab did not improve efficacy. (Funded by Merck; MODIFY I and MODIFY II ClinicalTrials.gov numbers, NCT01241552 and NCT01513239.

    CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus

    Get PDF
    The rice blast fungus Magnaporthe oryzae is the most serious pathogen of cultivated rice and a significant threat to global food security. To accelerate targeted mutation and specific genome editing in this species, we have developed a rapid plasmid-free CRISPR-Cas9-based genome editing method. We show that stable expression of Cas9 is highly toxic to M. oryzae. However efficient gene editing can be achieved by transient introduction of purified Cas9 pre-complexed to RNA guides to form ribonucleoproteins (RNPs). When used in combination with oligonucleotide or PCR-generated donor DNAs, generation of strains with specific base pair edits, in-locus gene replacements, or multiple gene edits, is very rapid and straightforward. We demonstrate a co-editing strategy for the creation of single nucleotide changes at specific loci. Additionally, we report a novel counterselection strategy which allows creation of precisely edited fungal strains that contain no foreign DNA and are completely isogenic to the wild type. Together, these developments represent a scalable improvement in the precision and speed of genetic manipulation in M. oryzae and are likely to be broadly applicable to other fungal species

    Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development

    Get PDF
    Nucleotide Excision Repair (NER), which removes a variety of helix-distorting lesions from DNA, is initiated by two distinct DNA damage-sensing mechanisms. Transcription Coupled Repair (TCR) removes damage from the active strand of transcribed genes and depends on the SWI/SNF family protein CSB. Global Genome Repair (GGR) removes damage present elsewhere in the genome and depends on damage recognition by the XPC/RAD23/Centrin2 complex. Currently, it is not well understood to what extent both pathways contribute to genome maintenance and cell survival in a developing organism exposed to UV light. Here, we show that eukaryotic NER, initiated by two distinct subpathways, is well conserved in the nematode Caenorhabditis elegans. In C. elegans, involvement of TCR and GGR in the UV-induced DNA damage response changes during development. In germ cells and early embryos, we find that GGR is the major pathway contributing to normal development and survival after UV irradiation, whereas in later developmental stages TCR is predominantly engaged. Furthermore, we identify four ISWI/Cohesin and four SWI/SNF family chromatin remodeling factors that are implicated in the UV damage response in a developmental stage dependent manner. These in vivo studies strongly suggest that involvement of different repair pathways and chromatin remodeling proteins in UV-induced DNA repair depends on developmental stage of cells
    corecore