629 research outputs found
Self-referenced continuous-variable quantum key distribution protocol
We introduce a new continuous-variable quantum key distribution (CV-QKD)
protocol, self-referenced CV-QKD, that eliminates the need for transmission of
a high-power local oscillator between the communicating parties. In this
protocol, each signal pulse is accompanied by a reference pulse (or a pair of
twin reference pulses), used to align Alice's and Bob's measurement bases. The
method of phase estimation and compensation based on the reference pulse
measurement can be viewed as a quantum analog of intradyne detection used in
classical coherent communication, which extracts the phase information from the
modulated signal. We present a proof-of-principle, fiber-based experimental
demonstration of the protocol and quantify the expected secret key rates by
expressing them in terms of experimental parameters. Our analysis of the secret
key rate fully takes into account the inherent uncertainty associated with the
quantum nature of the reference pulse(s) and quantifies the limit at which the
theoretical key rate approaches that of the respective conventional protocol
that requires local oscillator transmission. The self-referenced protocol
greatly simplifies the hardware required for CV-QKD, especially for potential
integrated photonics implementations of transmitters and receivers, with
minimum sacrifice of performance. As such, it provides a pathway towards
scalable integrated CV-QKD transceivers, a vital step towards large-scale QKD
networks.Comment: 14 pages, 10 figures. Published versio
Periodic Oscillations of Josephson-Vortex Flow Resistance in Oxygen-Deficient Y1Ba2Cu3Ox
We measured the Josephson vortex flow resistance as a function of magnetic
field applied parallel to the ab-planes using annealed Y1Ba2Cu3Ox intrinsic
Josephson junctions having high anisotropy (around 40) by oxygen content
reduction. Periodic oscillations were observed in magnetic fields above 45-58
kOe, corresponding to dense-dilute boundary for Josephson vortex lattice. The
observed period of oscillations, agrees well with the increase of one fluxon
per two junctions (\textit{=}\textit{/2Ls}), may correspond
to formation of a triangular lattice of Josephson vortices as has been reported
by Ooi et al. for highly anisotropic (larger than 200) Bi-2212 intrinsic
Josephson junctions.Comment: 5 pages, 4 figure
Comparison of the Fermi-surface topologies of kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated analogue
We have measured details of the quasi one-dimensional Fermi-surface sections
in the organic superconductor kappa-(BEDT-TTF)_2 Cu(NCS)_2 and its deuterated
analogue using angle-dependent millimetre-wave techniques. There are
significant differences in the corrugations of the Fermi surfaces in the
deuterated and undeuterated salts. We suggest that this is important in
understanding the inverse isotope effect, where the superconducting transition
temperature rises on deuteration. The data support models for superconductivity
which invoke electron-electron interactions depending on the topological
properties of the Fermi surface
Transport criticality of the first-order Mott transition in a quasi-two-dimensional organic conductor, -(BEDT-TTF)Cu[N(CN)]Cl
An organic Mott insulator, -(BEDT-TTF)Cu[N(CN)]Cl, was
investigated by resistance measurements under continuously controllable He gas
pressure. The first-order Mott transition was demonstrated by observation of
clear jump in the resistance variation against pressure. Its critical endpoint
at 38 K is featured by vanishing of the resistive jump and critical divergence
in pressure derivative of resistance, , which are consistent with the prediction of the dynamical mean field
theory and have phenomenological correspondence with the liquid-gas transition.
The present results provide the experimental basis for physics of the Mott
transition criticality.Comment: 4 pages, 5 figure
Theory of the beta-type Organic Superconductivity under Uniaxial Compression
We study theoretically the shift of the superconducting transition
temperature (Tc) under uniaxial compression in beta-type organic
superconductors, beta-(BEDT-TTF)2I3 and beta-(BDA-TTP)2X[X=SbF6,AsF6], in order
to clarify the electron correlation, the spin frustration and the effect of
dimerization. The transfer integrals are calculated by the extended Huckel
method assuming the uniaxial strain and the superconducting state mediated by
the spin fluctuation is solved using Eliashberg's equation with the
fluctuation-exchange approximation. The calculation is carried out on both the
dimerized (one-band) and nondimerized (two-band) Hubbard models. We have found
that (i) the behavior of Tc in beta-(BEDT-TTF)2I3 with a stronger dimerization
is well reproduced by the dimer model, while that in weakly dimerized
beta-BDA-TTP salts is rather well reproduced by the two-band model, and (ii)
the competition between the spin frustration and the effect induced by the
fluctuation is important in these materials, which causes nonmonotonic shift of
Tc against uniaxial compression.Comment: 18 pages, 16 figures, 2 tabl
On the Relationship Between the Critical Temperature and the London Penetration Depth in Layered Organic Superconductors
We present an analysis of previously published measurements of the London
penetration depth of layered organic superconductors. The predictions of the
BCS theory of superconductivity are shown to disagree with the measured zero
temperature, in plane, London penetration depth by up to two orders of
magnitude. We find that fluctuations in the phase of the superconducting order
parameter do not determine the superconducting critical temperature as the
critical temperature predicted for a Kosterlitz--Thouless transition is more
than an order of magnitude greater than is found experimentally for some
materials. This places constraints on theories of superconductivity in these
materials.Comment: 5 pages, 1 figur
Phase Transition in \nu=2 Bilayer Quantum Hall State
The Hall-plateau width and the activation energy were measured in the bilayer
quantum Hall state at filling factor \nu=2, 1 and 2/3, by changing the total
electron density and the density ratio in the two quantum wells. Their behavior
are remarkably different from one to another. The \nu=1 state is found stable
over all measured range of the density difference, while the \nu=2/3$ state is
stable only around the balanced point. The \nu=2 state, on the other hand,
shows a phase transition between these two types of the states as the electron
density is changed.Comment: 5 pages including figures, RevTe
Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration
The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager
that observes the solar corona with unprecedentedly high angular resolution
(consistent with its 1" pixel size). XRT has nine X-ray analysis filters with
different temperature responses. One of the most significant scientific
features of this telescope is its capability of diagnosing coronal temperatures
from less than 1 MK to more than 10 MK, which has never been accomplished
before. To make full use of this capability, accurate calibration of the
coronal temperature response of XRT is indispensable and is presented in this
article. The effect of on-orbit contamination is also taken into account in the
calibration. On the basis of our calibration results, we review the
coronal-temperature-diagnostic capability of XRT
Electronic Collective Modes and Superconductivity in Layered Conductors
A distinctive feature of layered conductors is the presence of low-energy
electronic collective modes of the conduction electrons. This affects the
dynamic screening properties of the Coulomb interaction in a layered material.
We study the consequences of the existence of these collective modes for
superconductivity. General equations for the superconducting order parameter
are derived within the strong-coupling phonon-plasmon scheme that account for
the screened Coulomb interaction. Specifically, we calculate the
superconducting critical temperature Tc taking into account the full
temperature, frequency and wave-vector dependence of the dielectric function.
We show that low-energy plasmons may contribute constructively to
superconductivity. Three classes of layered superconductors are discussed
within our model: metal-intercalated halide nitrides, layered organic materials
and high-Tc oxides. In particular, we demonstrate that the plasmon contribution
(electronic mechanism) is dominant in the first class of layered materials. The
theory shows that the description of so-called ``quasi-two-dimensional
superconductors'' cannot be reduced to a purely 2D model, as commonly assumed.
While the transport properties are strongly anisotropic, it remains essential
to take into account the screened interlayer Coulomb interaction to describe
the superconducting state of layered materials.Comment: Final version (minor changes) 14 pages, 6 figure
- …
