45 research outputs found

    Ancient Documents Denoising and Decomposition Using Aujol and Chambolle Algorithm

    No full text
    With the improvement of printing technology since the 15th century, there is a huge amount of printed documents published and distributed. These documents are degraded by the time and require to be preprocessed before being submitted to image indexing strategy, in order to enhance the quality of images. This paper proposes a new pre-processing that permits to denoise these documents, by using a Aujol and Chambolle algorithm. Aujol and Chambolle algorithm allows to extract meaningful components from image. In this case, we can extract shapes, textures and noise. Some examples of specific processings applied on each layer are illustrated in this paper

    Robustness of the EWMA Sampling Plan to Non-Normality

    Get PDF
    The effect of non-normality on the OC function of the sampling plan under EWMA is studied by deriving the OC function for a non-normal population represented by the first four terms of an Edgeworth series

    Sustainable Energy Consumption Monitoring in Residential Settings

    Get PDF
    The continuous growth of energy needs and the fact that unpredictable energy demand is mostly served by unsustainable (i.e. fossil-fuel) power generators have given rise to the development of Demand Response (DR) mechanisms for flattening energy demand. Building effective DR mechanisms and user awareness on power consumption can significantly benefit from fine-grained monitoring of user consumption at the appliance level. However, installing and maintaining such a monitoring infrastructure in residential settings can be quite expensive. In this paper, we study the problem of fine-grained appliance power-consumption monitoring based on one house-level meter and few plug-level meters. We explore the trade-off between monitoring accuracy and cost, and exhaustively find the minimum subset of plug-level meters that maximize accuracy. As exhaustive search is time- and resource-consuming, we define a heuristic approach that finds the optimal set of plug-level meters without utilizing any other sets of plug-level meters. Based on experiments with real data, we found that few plug-level meters - when appropriately placed - can very accurately disaggregate the total real power consumption of a residential setting and verified the effectiveness of our heuristic approach
    corecore