859 research outputs found
Visual sensing of spacecraft guidance information. Earth orbit rendezvous maneuvers
Visual sensing and spacecraft guidance for earth orbit rendezvous maneuver
Photoelastic force measurements in granular materials
Photoelastic techniques are used to make both qualitative and quantitative
measurements of the forces within idealized granular materials. The method is
based on placing a birefringent granular material between a pair of polarizing
filters, so that each region of the material rotates the polarization of light
according to the amount of local of stress. In this review paper, we summarize
past work using the technique, describe the optics underlying the technique,
and illustrate how it can be used to quantitatively determine the vector
contact forces between particles in a 2D granular system. We provide a
description of software resources available to perform this task, as well as
key techniques and resources for building an experimental apparatus
Signatures of natural selection among lineages and habitats in Oncorhynchus mykiss
Recent advances in molecular interrogation techniques now allow unprecedented genomic inference about the role of adaptive genetic divergence in wild populations. We used high-throughput genotyping to screen a genome-wide panel of 276 single nucleotide polymorphisms (SNPs) for the economically and culturally important salmonid Oncorhynchus mykiss. Samples included 805 individuals from 11 anadromous and resident populations from the northwestern United States and British Columbia, and represented two major lineages including paired populations of each life history within single drainages of each lineage. Overall patterns of variation affirmed clear distinctions between lineages and in most instances, isolation by distance within them. Evidence for divergent selection at eight candidate loci included significant landscape correlations, particularly with temperature. High diversity of two nonsynonymous mutations within the peptide-binding region of the major histocompatibility complex (MHC) class II (DAB) gene provided signatures of balancing selection. Weak signals for potential selection between sympatric resident and anadromous populations were revealed from genome scans and allele frequency comparisons. Our results suggest an important adaptive role for immune-related functions and present a large genomic resource for future studie
Memory of the Unjamming Transition during Cyclic Tiltings of a Granular Pile
Discrete numerical simulations are performed to study the evolution of the
micro-structure and the response of a granular packing during successive
loading-unloading cycles, consisting of quasi-static rotations in the gravity
field between opposite inclination angles. We show that internal variables,
e.g., stress and fabric of the pile, exhibit hysteresis during these cycles due
to the exploration of different metastable configurations. Interestingly, the
hysteretic behaviour of the pile strongly depends on the maximal inclination of
the cycles, giving evidence of the irreversible modifications of the pile state
occurring close to the unjamming transition. More specifically, we show that
for cycles with maximal inclination larger than the repose angle, the weak
contact network carries the memory of the unjamming transition. These results
demonstrate the relevance of a two-phases description -strong and weak contact
networks- for a granular system, as soon as it has approached the unjamming
transition.Comment: 13 pages, 15 figures, soumis \`{a} Phys. Rev.
Evolution of displacements and strains in sheared amorphous solids
The local deformation of two-dimensional Lennard-Jones glasses under imposed
shear strain is studied via computer simulations. Both the mean squared
displacement and mean squared strain rise linearly with the length of the
strain interval over which they are measured. However, the
increase in displacement does not represent single-particle diffusion. There
are long-range spatial correlations in displacement associated with slip lines
with an amplitude of order the particle size. Strong dependence on system size
is also observed. The probability distributions of displacement and strain are
very different. For small the distribution of displacement has
a plateau followed by an exponential tail. The distribution becomes Gaussian as
increases to about .03. The strain distributions consist of
sharp central peaks associated with elastic regions, and long exponential tails
associated with plastic regions. The latter persist to the largest studied.Comment: Submitted to J. Phys. Cond. Mat. special volume for PITP Conference
on Mechanical Behavior of Glassy Materials. 16 Pages, 8 figure
Quasiperiodic Tip Splitting in Directional Solidification
We report experimental results on the tip splitting dynamics of seaweed
growth in directional solidification of succinonitrile alloys with
poly(ethylene oxide) or acetone as solutes. The seaweed or dense branching
morphology was selected by solidifying grains which are oriented close to the
{111} plane. Despite the random appearance of the growth, a quasiperiodic tip
splitting morphology was observed in which the tip alternately splits to the
left and to the right. The tip splitting frequency f was found to be related to
the growth velocity V as a power law f V^{1.5}. This finding
is consistent with the predictions of a tip splitting model that is also
presented. Small anisotropies are shown to lead to different kinds of seaweed
morphologies.Comment: 4 pages, 7 figures, submitted to Physical Review Letter
Force distributions in a triangular lattice of rigid bars
We study the uniformly weighted ensemble of force balanced configurations on
a triangular network of nontensile contact forces. For periodic boundary
conditions corresponding to isotropic compressive stress, we find that the
probability distribution for single-contact forces decays faster than
exponentially. This super-exponential decay persists in lattices diluted to the
rigidity percolation threshold. On the other hand, for anisotropic imposed
stresses, a broader tail emerges in the force distribution, becoming a pure
exponential in the limit of infinite lattice size and infinitely strong
anisotropy.Comment: 11 pages, 17 figures Minor text revisions; added references and
acknowledgmen
Self-diffusion in dense granular shear flows
Diffusivity is a key quantity in describing velocity fluctuations in granular
materials. These fluctuations are the basis of many thermodynamic and
hydrodynamic models which aim to provide a statistical description of granular
systems. We present experimental results on diffusivity in dense, granular
shear in a 2D Couette geometry. We find that self-diffusivities are
proportional to the local shear rate with diffusivities along the mean flow
approximately twice as large as those in the perpendicular direction. The
magnitude of the diffusivity is D \approx \dot\gamma a^2 where a is the
particle radius. However, the gradient in shear rate, coupling to the mean
flow, and drag at the moving boundary lead to particle displacements that can
appear sub- or super-diffusive. In particular, diffusion appears superdiffusive
along the mean flow direction due to Taylor dispersion effects and subdiffusive
along the perpendicular direction due to the gradient in shear rate. The
anisotropic force network leads to an additional anisotropy in the diffusivity
that is a property of dense systems with no obvious analog in rapid flows.
Specifically, the diffusivity is supressed along the direction of the strong
force network. A simple random walk simulation reproduces the key features of
the data, such as the apparent superdiffusive and subdiffusive behavior arising
from the mean flow, confirming the underlying diffusive motion. The additional
anisotropy is not observed in the simulation since the strong force network is
not included. Examples of correlated motion, such as transient vortices, and
Levy flights are also observed. Although correlated motion creates velocity
fields qualitatively different from Brownian motion and can introduce
non-diffusive effects, on average the system appears simply diffusive.Comment: 13 pages, 20 figures (accepted to Phys. Rev. E
Recommended from our members
Improved electron-beam ion-trap lifetime measurement of the Ne8+ 1s2s3S1 level
An earlier electron-beam ion-trap (EBIT) lifetime measurement of the Ne8+ 1s2s3S1 level has been improved upon, reducing the uncertainties to less than the scatter in the existing theoretical calculations. The new result, 91.7±0.4 μs, agrees with the previous value, but is more precise by a factor of 4. The new value distinguishes among theoretical values, as agreement is obtained only with those calculations that employ "exact" nonrelativistic or relativistic wave functions. Routes to measurements with even higher accuracy are discussed
The compositional and evolutionary logic of metabolism
Metabolism displays striking and robust regularities in the forms of
modularity and hierarchy, whose composition may be compactly described. This
renders metabolic architecture comprehensible as a system, and suggests the
order in which layers of that system emerged. Metabolism also serves as the
foundation in other hierarchies, at least up to cellular integration including
bioenergetics and molecular replication, and trophic ecology. The
recapitulation of patterns first seen in metabolism, in these higher levels,
suggests metabolism as a source of causation or constraint on many forms of
organization in the biosphere.
We identify as modules widely reused subsets of chemicals, reactions, or
functions, each with a conserved internal structure. At the small molecule
substrate level, module boundaries are generally associated with the most
complex reaction mechanisms and the most conserved enzymes. Cofactors form a
structurally and functionally distinctive control layer over the small-molecule
substrate. Complex cofactors are often used at module boundaries of the
substrate level, while simpler ones participate in widely used reactions.
Cofactor functions thus act as "keys" that incorporate classes of organic
reactions within biochemistry.
The same modules that organize the compositional diversity of metabolism are
argued to have governed long-term evolution. Early evolution of core
metabolism, especially carbon-fixation, appears to have required few
innovations among a small number of conserved modules, to produce adaptations
to simple biogeochemical changes of environment. We demonstrate these features
of metabolism at several levels of hierarchy, beginning with the small-molecule
substrate and network architecture, continuing with cofactors and key conserved
reactions, and culminating in the aggregation of multiple diverse physical and
biochemical processes in cells.Comment: 56 pages, 28 figure
- …
