43 research outputs found

    Evaluation of the effect of plant material on the quality of cooked sausages

    Get PDF
    Various amounts of buckwheat hulls (1%, 1,5%, and 3%) were added to cooked turkey sausages. The effect of buckwheat hulls on the physicochemical characteristics of the cooked turkey sausages, including, pH, instrumental color, texture profile analysis (TPA), antioxidant content and sensory evaluation, were determined. Increased levels of added buckwheat hulls led to higher antioxidant activity. However, the protein and fat contents of the cooked turkey sausage samples were constant. The instrumental color in control sample were L*=65,1, a*=5,6, and b*=9,8. There were slight differences in the TPA among the treated samples. According to the results of the sensory and objective assessment of consumer properties, it can be argued that sample F1 with the introduction of buckwheat hulls 3,0% had a negative effect on sensory properties of cooked turkey sausages. The best marks were given to the sample  F1 with the introduction of buckwheat hulls 1,0% on sensory evaluation

    Quantum Computing: Algorithms,Architectures, and Applications

    Get PDF
    Cryptography, optimization, simulation, and machine learning are just a few of the industries that might be completely transformed by quantum computing. This abstract gives a thorough introduction to quantum computing with an emphasis on its algorithms, architectures, and applications. In conclusion, this abstract offers an in-depth analysis of quantum computing, including its algorithms, structures, and applications. It highlights the revolutionary potential of quantum computing in tackling difficult issues that are beyond the scope of conventional computers, laying the groundwork for further research and understanding of this quickly developing topic

    Heat and Material Balance of Heliopyrolysis Device

    Get PDF
    The article proposes a technological scheme for the process of obtaining alternative fuels from local biomass by the method of heliopyrolysis. Besides, the temperature regime in the reactor of the pyrolysis device and the thermal energy savings consumed for the specific needs of the device, as well as the thermal performance of the device are analyzed. It is known that reducing energy consumption in pyrolysis technology is a major challenge because energy (heat) must first be supplied to maintain the reactor temperature regime. Typically, the processes carried out in a pyrolysis unit are carried out at the expense of coal, natural gas or electricity consumption. For the operation very large amount of thermal energy is required to decompose biomass waste, and additional heating of biomass requires excessive energy consumption. To prevent these technological problems, the article proposes a solar concentrator’s heliopyrolysis system to heat the pyrolysis reactor. Applying a solar concentrator to this type of pyrolysis device can achieve a temperature of 400–700 °C. A schematic diagram of the experimental pyrolysis unit of the solar concentrator was developed, and samples of alternative fuels (pyrogas, liquid, solid fuels) were obtained as a result of thermal processing of biomass. Based on the analysis of the material balance of a heliopyrolysis plant with a parabolic-cylindrical solar concentrator, it was found that about 20 % pyrogas, 60 % liquid fuel, 8–20 % solid alternative fuel were obtained during the pyrolysis of cotton stalks with an initial biomass load of 3.76 kg. In order to determine the consumption of thermal energy in the pyrolysis process, as well as for the replaced solar energy, an analysis of the heat balance of the proposed installation was carried out. It is shown that the use of a solar concentrator makes it possible to reduce the specific energy consumption for the pyrolysis process by up to 30 %. The proposed heliopyrolysis device makes it possible to reduce the consumption of thermal energy for own needs, increase the overall efficiency of the installation and ensure a stable temperature regime for pyrolysis

    Mathematical Modeling of the Combined Heat Supply System of a Solar House

    Get PDF
    Today, increasing energy efficiency in residential heating systems, saving fuel and energy resources, and improving the efficiency of using devices based on renewable energy sources is an urgent issue. The purpose of the article is to develop a mathematical model of the heat balance and conduct a theoretical study of one-story rural houses based on the use of solar energy in a non-stationary mode. To achieve this goal, an experimental one-story solar house with autonomous heat supply was built. The heat supply of the experimental solar house mainly uses solar energy, and when the heat supply load exceeds this load, the traditional boiler device is used. The power supply of the experimental solar house is provided by a solar panel (photovoltaic converter). A heat balance scheme for a solar house with autonomous heat supply and an electrothermal scheme of a physical model are proposed. Based on the proposed schemes, a mathematical model of heat balance and a calculation algorithm based on the heat balance equation of the dynamic state of the heat supply system of a one-story experimental solar house in a non-stationary mode have been developed. On the basis of mathematical modeling, the influence of the heat capacity of the wall structure on the temperature regime of the building was studied. On the basis of the MATLAB-Simulink program, the main temperature characteristics were built, on which the change in the temperature of the internal air of the building was analyzed depending on the ambient temperature. On the basis of the program, a modular scheme of the dynamic model was built. Based on the modular scheme, the results of the experiment on changing the air inside the solar house and the outdoor temperature are presented in the form of a graph. The mathematical model of the thermal balance of the building in dynamic mode and the obtained calculation results are recommended for use in the development of energy-efficient solar houses

    Тепловой и материальный баланс гелиопиролизного устройства

    Get PDF
    The article proposes a technological scheme for the process of obtaining alternative fuels from local biomass by the method of heliopyrolysis. Besides, the temperature regime in the reactor of the pyrolysis device and the thermal energy savings consumed for the specific needs of the device, as well as the thermal performance of the device are analyzed. It is known that reducing energy consumption in pyrolysis technology is a major challenge because energy (heat) must first be supplied to maintain the reactor temperature regime. Typically, the processes carried out in a pyrolysis unit are carried out at the expense of coal, natural gas or electricity consumption. For the operation very large amount of thermal energy is required to decompose biomass waste, and additional heating of biomass requires excessive energy consumption. To prevent these technological problems, the article proposes a solar concentrator’s heliopyrolysis system to heat the pyrolysis reactor. Applying a solar concentrator to this type of pyrolysis device can achieve a temperature of 400–700 °C. A schematic diagram of the experimental pyrolysis unit of the solar concentrator was developed, and samples of alternative fuels (pyrogas, liquid, solid fuels) were obtained as a result of thermal processing of biomass. Based on the analysis of the material balance of a heliopyrolysis plant with a parabolic-cylindrical solar concentrator, it was found that about 20 % pyrogas, 60 % liquid fuel, 8–20 % solid alternative fuel were obtained during the pyrolysis of cotton stalks with an initial biomass load of 3.76 kg. In order to determine the consumption of thermal energy in the pyrolysis process, as well as for the replaced solar energy, an analysis of the heat balance of the proposed installation was carried out. It is shown that the use of a solar concentrator makes it possible to reduce the specific energy consumption for the pyrolysis process by up to 30 %. The proposed heliopyrolysis device makes it possible to reduce the consumption of thermal energy for own needs, increase the overall efficiency of the installation and ensure a stable temperature regime for pyrolysis.. Предложена технологическая схема процесса получения альтернативного топлива из местной биомассы методом гелиопиролиза. Проанализированы температурный режим в реакторе пиролизной установки, экономия тепловой энергии, расходуемой на конкретные нужды оборудования, а также тепловая производительность установки. Снижение энергопотребления в технологии пиролиза является серьезной проблемой. Это связано с необходимостью подвода энергии (теплоты) для поддержания температурного режима реактора, дополнительного нагрева биомассы, а также особенностями процесса разложения отходов, для которого требуется очень большая тепловая энергия. Обычно пиролиз осуществляется за счет потребления угля, природного газа или электроэнергии. В статье предложено использовать для обогрева пиролизного реактора гелиопиролизную систему с параболо-цилиндрическим солнечным концентратором, что позволяет достичь температуры 400–700 °C. Разработана принципиальная схема экспериментальной пиролизной установки солнечного концентратора и получены образцы альтернативных топлив. Так, термическая переработка стеблей хлопчатника дала около 20 % пирогаза, 60 % жидкого топлива, 8–20 % твердого альтернативного топлива при загрузке исходной биомассы 3,76 кг. Рассмотрен тепловой и материальный баланс установки. Показано, что применение солнечного концентратора позволяет уменьшить удельные энергозатраты на процесс пиролиза до 30 %. Предложенная гелиопиролизная установка снижает расход тепловой энергии на собственные нужды, повышает общий коэффициент полезного действия и обеспечивает стабильный температурный режим пиролиза

    Математическое моделирование комбинированной системы теплоснабжения солнечного дома)

    Get PDF
    Today, increasing energy efficiency in residential heating systems, saving fuel and energy resources, and improving the efficiency of using devices based on renewable energy sources is an urgent issue. The purpose of the article is to develop a mathematical model of the heat balance and conduct a theoretical study of one-story rural houses based on the use of solar energy in a non-stationary mode. To achieve this goal, an experimental one-story solar house with autonomous heat supply was built. The heat supply of the experimental solar house mainly uses solar energy, and when the heat supply load exceeds this load, the traditional boiler device is used. The power supply of the experimental solar house is provided by a solar panel (photovoltaic converter). A heat balance scheme for a solar house with autonomous heat supply and an electrothermal scheme of a physical model are proposed. Based on the proposed schemes, a mathematical model of heat balance and a calculation algorithm based on the heat balance equation of the dynamic state of the heat supply system of a one-story experimental solar house in a non-stationary mode have been developed. On the basis of mathematical modeling, the influence of the heat capacity of the wall structure on the temperature regime of the building was studied. On the basis of the MATLAB-Simulink program, the main temperature characteristics were built, on which the change in the temperature of the internal air of the building was analyzed depending on the ambient temperature. On the basis of the program, a modular scheme of the dynamic model was built. Based on the modular scheme, the results of the experiment on changing the air inside the solar house and the outdoor temperature are presented in the form of a graph. The mathematical model of the thermal balance of the building in dynamic mode and the obtained calculation results are recommended for use in the development of energy-efficient solar houses.Вопросы экономии топливно-энергетических ресурсов, повышения эффективности систем теплоснабжения жилых помещений, а также использования устройств на основе возобновляемых источников энергии на сегодняшний день имеют особую актуальность. Цель статьи – разработать математическую модель теплового баланса и провести теоретическое исследование одноэтажных сельских домов, использующих солнечную энергию в нестационарном режиме. Для ее реализации построен экспериментальный одноэтажный солнечный дом с автономным теплоснабжением на основе преимущественно солнечной энергии. В случаях, если нагрузка на теплоснабжение превышает солнечную нагрузку, применяется традиционное котельное устройство. Электроснабжение экспериментального дома обеспечивается солнечной панелью (фотоэлектрическим преобразователем). Предложены схема теплового баланса солнечного дома с автономным теплоснабжением и электротепловая схема физической модели. На их основе разработаны математическая модель и алгоритм расчета, базирующийся на уравнении теплового баланса динамического состояния системы теплоснабжения экспериментального дома в нестационарном режиме. Исследовано влияние теплоемкости стеновой конструкции на температурный режим здания. В среде моделирования MATLAB-Simulink построены основные температурные характеристики, на которых проанализировано изменение температуры внутреннего воздуха здания в зависимости от температуры окружающей среды. Построена модульная схема динамической модели, результаты эксперимента по изменению воздуха внутри солнечного дома и температуры наружного воздуха представлены в виде графика. Математическая модель теплового баланса здания в динамическом режиме и результаты расчетов могут использоваться при разработке энергоэффективных солнечных домов

    Heat and Material Balance of Heliopyrolysis Device

    Get PDF
    The article proposes a technological scheme for the process of obtaining alternative fuels from local biomass by the method of heliopyrolysis. Besides, the temperature regime in the reactor of the pyrolysis device and the thermal energy savings consumed for the specific needs of the device, as well as the thermal performance of the device are analyzed. It is known that reducing energy consumption in pyrolysis technology is a major challenge because energy (heat) must first be supplied to maintain the reactor temperature regime. Typically, the processes carried out in a pyrolysis unit are carried out at the expense of coal, natural gas or electricity consumption. For the operation very large amount of thermal energy is required to decompose biomass waste, and additional heating of biomass requires excessive energy consumption. To prevent these technological problems, the article proposes a solar concentrator’s heliopyrolysis system to heat the pyrolysis reactor. Applying a solar concentrator to this type of pyrolysis device can achieve a temperature of 400–700 °C. A schematic diagram of the experimental pyrolysis unit of the solar concentrator was developed, and samples of alternative fuels (pyrogas, liquid, solid fuels) were obtained as a result of thermal processing of biomass. Based on the analysis of the material balance of a heliopyrolysis plant with a parabolic-cylindrical solar concentrator, it was found that about 20 % pyrogas, 60 % liquid fuel, 8–20 % solid alternative fuel were obtained during the pyrolysis of cotton stalks with an initial biomass load of 3.76 kg. In order to determine the consumption of thermal energy in the pyrolysis process, as well as for the replaced solar energy, an analysis of the heat balance of the proposed installation was carried out. It is shown that the use of a solar concentrator makes it possible to reduce the specific energy consumption for the pyrolysis process by up to 30 %. The proposed heliopyrolysis device makes it possible to reduce the consumption of thermal energy for own needs, increase the overall efficiency of the installation and ensure a stable temperature regime for pyrolysis

    Mathematical Modeling of the Combined Heat Supply System of a Solar House

    Get PDF
    Today, increasing energy efficiency in residential heating systems, saving fuel and energy resources, and improving the efficiency of using devices based on renewable energy sources is an urgent issue. The purpose of the article is to develop a mathematical model of the heat balance and conduct a theoretical study of one-story rural houses based on the use of solar energy in a non-stationary mode. To achieve this goal, an experimental one-story solar house with autonomous heat supply was built. The heat supply of the experimental solar house mainly uses solar energy, and when the heat supply load exceeds this load, the traditional boiler device is used. The power supply of the experimental solar house is provided by a solar panel (photovoltaic converter). A heat balance scheme for a solar house with autonomous heat supply and an electrothermal scheme of a physical model are proposed. Based on the proposed schemes, a mathematical model of heat balance and a calculation algorithm based on the heat balance equation of the dynamic state of the heat supply system of a one-story experimental solar house in a non-stationary mode have been developed. On the basis of mathematical modeling, the influence of the heat capacity of the wall structure on the temperature regime of the building was studied. On the basis of the MATLAB-Simulink program, the main temperature characteristics were built, on which the change in the temperature of the internal air of the building was analyzed depending on the ambient temperature. On the basis of the program, a modular scheme of the dynamic model was built. Based on the modular scheme, the results of the experiment on changing the air inside the solar house and the outdoor temperature are presented in the form of a graph. The mathematical model of the thermal balance of the building in dynamic mode and the obtained calculation results are recommended for use in the development of energy-efficient solar houses

    Assessment of the Gross Potential of Local Waste Based on Geoinformation Systems for Bioenergy Production

    No full text
    This article analyzes the gross potential of local hydrocarbon waste and biomass using the example of the Republic of Uzbekistan with the aim of producing bioenergy. To calculate the raw material potential, we used official and reference data on the production and consumption of fuel, fertilizers and the formation of organic waste, the accumulation of municipal solid waste (MSW), the amount of saline land where halophytic plantations can be created, which can be considered as biomass. Based on the collected data, mathematical operations and calculations of the potential of biogas technology were performed. A block diagram has been developed that describes the steps of a Geo Information Systems (GIS) map. GIS maps have been created that give a visual representation of the spatial distribution of the gross potential of various types of waste in the regions of the republic and can serve as a tool in planning the distribution of biogas technology.</jats:p
    corecore