144 research outputs found

    The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder that frequently results in renal fallure due to progressive cyst development. The major locus, PKD1, maps to 16p13.3. We identified a chromosome translocation associated with ADPKD that disrupts a gene (PBP) encoding a 14 kb transcript in the PKD1 candidate region. Further mutations of the PBP gene were found in PKD1 patients, two deletions (one a de novo event) and a splicing defect, confirming that PBP is the PKD1 gene. This gene is located adjacent to the TSC2 locus in a genomic region that is reiterated more proximally on 16p. The duplicate area encodes three transcripts substantially homologous to the PKD1 transcript. Partial sequence analysis of the PKD1 transcript shows that it encodes a novel protein whose function is at present unknown

    A multi-disciplinary perspective on emergent and future innovations in peer review [version 2; referees: 2 approved]

    Get PDF
    Peer review of research articles is a core part of our scholarly communication system. In spite of its importance, the status and purpose of peer review is often contested. What is its role in our modern digital research and communications infrastructure? Does it perform to the high standards with which it is generally regarded? Studies of peer review have shown that it is prone to bias and abuse in numerous dimensions, frequently unreliable, and can fail to detect even fraudulent research. With the advent of web technologies, we are now witnessing a phase of innovation and experimentation in our approaches to peer review. These developments prompted us to examine emerging models of peer review from a range of disciplines and venues, and to ask how they might address some of the issues with our current systems of peer review. We examine the functionality of a range of social Web platforms, and compare these with the traits underlying a viable peer review system: quality control, quantified performance metrics as engagement incentives, and certification and reputation. Ideally, any new systems will demonstrate that they out-perform and reduce the biases of existing models as much as possible. We conclude that there is considerable scope for new peer review initiatives to be developed, each with their own potential issues and advantages. We also propose a novel hybrid platform model that could, at least partially, resolve many of the socio-technical issues associated with peer review, and potentially disrupt the entire scholarly communication system. Success for any such development relies on reaching a critical threshold of research community engagement with both the process and the platform, and therefore cannot be achieved without a significant change of incentives in research environments

    Myocardial Structural Alteration and Systolic Dysfunction in Preclinical Hypertrophic Cardiomyopathy Mutation Carriers

    Get PDF
    BACKGROUND: To evaluate the presence of myocardial structural alterations and subtle myocardial dysfunction during familial screening in asymptomatic mutation carriers without hypertrophic cardiomyopathy (HCM) phenotype. METHODS AND FINDINGS: Sixteen HCM families with pathogenic mutation were studied and 46 patients with phenotype expression (Mut+/Phen+) and 47 patients without phenotype expression (Mut+/Phen-) were observed. Twenty-five control subjects, matched with the Mut+/Phen- group, were recruited for comparison. Echocardiography was performed to evaluate conventional parameters, myocardial structural alteration by calibrated integrated backscatter (cIBS) and global and segmental longitudinal strain by speckle tracking analysis. All 3 groups had similar left ventricular dimensions and ejection fraction. Basal anteroseptal cIBS was the highest in Mut+/Phen+ patients (-14.0+/-4.6 dB, p-19.0 dB basal anteroseptal cIBS or >-18.0% basal anteroseptal longitudinal strain had a sensitivity of 98% and a specificity of 72% in differentiating Mut+/Phen- group from controls. CONCLUSION: The use of cIBS and segmental longitudinal strain can differentiate HCM Mut+/Phen- patients from controls with important clinical implications for the family screening and follow-up of these patients.published_or_final_versio

    Clinical practice: Coeliac disease

    Get PDF
    Coeliac disease (CD) is an immune-mediated systemic condition elicited by gluten and related prolamines in genetically predisposed individuals and characterised by gluten-induced symptoms and signs, specific antibodies, a specific human leukocyte antigen (HLA) type and enteropathy. The risk of coeliac disease is increased in first-degree relatives, certain syndromes including Down syndrome and autoimmune disorders. It is thought to occur in 1 in 100–200 individuals, but still only one in four cases is diagnosed. Small-bowel biopsy is no longer deemed necessary in a subgroup of patients, i.e. when all of the following are present: typical symptoms or signs, high titres of and transglutaminase antibodies, endomysial antibodies, and HLA-type DQ2 or DQ8. In all other cases, small-bowel biopsy remains mandatory for a correct diagnosis. Therapy consists of a strictly gluten-free diet. This should result in complete disappearance of symptoms and of serological markers. Adequate follow-up is considered essential. Conclusion: Although small-bowel biopsy may be omitted in a minority of patients, small-bowel biopsy is essential for a correct diagnosis of CD in all other cases. Diagnostic work-up should be completed before treatment with gluten-free diet instituted

    A Linear Collider Vision for the Future of Particle Physics

    Get PDF
    In this paper we review the physics opportunities at linear e+ee^+e^- colliders with a special focus on high centre-of-mass energies and beam polarisation, take a fresh look at the various accelerator technologies available or under development and, for the first time, discuss how a facility first equipped with a technology mature today could be upgraded with technologies of tomorrow to reach much higher energies and/or luminosities. In addition, we will discuss detectors and alternative collider modes, as well as opportunities for beyond-collider experiments and R\&D facilities as part of a linear collider facility (LCF). The material of this paper will support all plans for e+ee^+e^- linear colliders and additional opportunities they offer, independently of technology choice or proposed site, as well as R\&D for advanced accelerator technologies. This joint perspective on the physics goals, early technologies and upgrade strategies has been developed by the LCVision team based on an initial discussion at LCWS2024 in Tokyo and a follow-up at the LCVision Community Event at CERN in January 2025. It heavily builds on decades of achievements of the global linear collider community, in particular in the context of CLIC and ILC

    The Linear Collider Facility (LCF) at CERN

    Get PDF
    In this paper we outline a proposal for a Linear Collider Facility as the next flagship project for CERN. It offers the opportunity for a timely, cost-effective and staged construction of a new collider that will be able to comprehensively map the Higgs boson's properties, including the Higgs field potential, thanks to a large span in centre-of-mass energies and polarised beams. A comprehensive programme to study the Higgs boson and its closest relatives with high precision requires data at centre-of-mass energies from the Z pole to at least 1 TeV. It should include measurements of the Higgs boson in both major production mechanisms, ee -> ZH and ee -> vvH, precision measurements of gauge boson interactions as well as of the W boson, Higgs boson and top-quark masses, measurement of the top-quark Yukawa coupling through ee ->ttH, measurement of the Higgs boson self-coupling through HH production, and precision measurements of the electroweak couplings of the top quark. In addition, ee collisions offer discovery potential for new particles complementary to HL-LHC

    A multi-disciplinary perspective on emergent and future innovations in peer review

    Get PDF
    Peer review of research articles is a core part of our scholarly communication system. In spite of its importance, the status and purpose of peer review is often contested. What is its role in our modern digital research and communications infrastructure? Does it perform to the high standards with which it is generally regarded? Studies of peer review have shown that it is prone to bias and abuse in numerous dimensions, frequently unreliable, and can fail to detect even fraudulent research. With the advent of web technologies, we are now witnessing a phase of innovation and experimentation in our approaches to peer review. These developments prompted us to examine emerging models of peer review from a range of disciplines and venues, and to ask how they might address some of the issues with our current systems of peer review. We examine the functionality of a range of social Web platforms, and compare these with the traits underlying a viable peer review system: quality control, quantified performance metrics as engagement incentives, and certification and reputation. Ideally, any new systems will demonstrate that they out-perform and reduce the biases of existing models as much as possible. We conclude that there is considerable scope for new peer review initiatives to be developed, each with their own potential issues and advantages. We also propose a novel hybrid platform model that could, at least partially, resolve many of the socio-technical issues associated with peer review, and potentially disrupt the entire scholarly communication system. Success for any such development relies on reaching a critical threshold of research community engagement with both the process and the platform, and therefore cannot be achieved without a significant change of incentives in research environments

    The Linear Collider Facility (LCF) at CERN

    Get PDF
    In this paper we outline a proposal for a Linear Collider Facility as the next flagship project for CERN. It offers the opportunity for a timely, cost-effective and staged construction of a new collider that will be able to comprehensively map the Higgs boson's properties, including the Higgs field potential, thanks to a large span in centre-of-mass energies and polarised beams. A comprehensive programme to study the Higgs boson and its closest relatives with high precision requires data at centre-of-mass energies from the Z pole to at least 1 TeV. It should include measurements of the Higgs boson in both major production mechanisms, ee -> ZH and ee -> vvH, precision measurements of gauge boson interactions as well as of the W boson, Higgs boson and top-quark masses, measurement of the top-quark Yukawa coupling through ee ->ttH, measurement of the Higgs boson self-coupling through HH production, and precision measurements of the electroweak couplings of the top quark. In addition, ee collisions offer discovery potential for new particles complementary to HL-LHC
    corecore