190 research outputs found
Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly
The genetic causes of malformations of cortical development (MCD) remain largely unknown. Here we report the discovery of multiple pathogenic missense mutations in TUBG1, DYNC1H1 and KIF2A, as well as a single germline mosaic mutation in KIF5C, in subjects with MCD. We found a frequent recurrence of mutations in DYNC1H1, implying that this gene is a major locus for unexplained MCD. We further show that the mutations in KIF5C, KIF2A and DYNC1H1 affect ATP hydrolysis, productive protein folding and microtubule binding, respectively. In addition, we show that suppression of mouse Tubg1 expression in vivo interferes with proper neuronal migration, whereas expression of altered gamma-tubulin proteins in Saccharomyces cerevisiae disrupts normal microtubule behavior. Our data reinforce the importance of centrosomal and microtubule-related proteins in cortical development and strongly suggest that microtubule-dependent mitotic and postmitotic processes are major contributors to the pathogenesis of MCD
Nonthrombogenic, Biodegradable Elastomeric Polyurethanes with Variable Sulfobetaine Content
For applications where degradable polymers are
likely to have extended blood contact, it is often important for
these materials to exhibit high levels of thromboresistance.
This can be achieved with surface modification approaches, but
such modifications may be transient with degradation.
Alternatively, polymer design can be altered such that the
bulk polymer is thromboresistant and this is maintained with
degradation. Toward this end a series of biodegradable, elastic
polyurethanes (PESBUUs) containing different zwitterionic
sulfobetaine (SB) content were synthesized from a polycaprolactone-diol (PCL-diol):SB-diol mixture (100:0, 75:25, 50:50, 25:75
and 0:100) reacted with diisocyanatobutane and chain extended with putrescine. The chemical structure, tensile mechanical
properties, thermal properties, hydrophilicity, biodegradability, fibrinogen adsorption and thrombogenicity of the resulting
polymers was characterized. With increased SB content some weakening in tensile properties occurred in wet conditions and
enzymatic degradation also decreased. However, at higher zwitterionic molar ratios (50% and 75%) wet tensile strength exceeded
15 MPa and breaking strain was >500%. Markedly reduced thrombotic deposition was observed both before and after substantial
degradation for both of these PESBUUs and they could be processed by electrospinning into a vascular conduit format with
appropriate compliance properties. The mechanical and degradation properties as well as the acute in vitro thrombogenicity
assessment suggest that these tunable polyurethanes could provide options appropriate for use in blood contacting applications
where a degradable, elastomeric component with enduring thromboresistance is desired
A Review on Composite Liposomal Technologies for Specialized Drug Delivery
The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications
AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders.
AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission
Caractérisation et conservation de la diversité bactérienne d’un lait fermenté traditionnel breton, le Gwell en lien avec la préservation d’une race locale de vache, la Bretonne Pie Noir
Le Gwell est un lait fermenté traditionnel spécifique de la Bretagne. Il est obtenu à partir de lait de vaches de race Bretonne Pie Noir, inoculé avec une portion de la fabrication précédente (appelé ferment) sans aucun recours à des levains commerciaux. Les productions de Gwell partagent une texture ferme et onctueuse et un gout frais et acidulé, avec des caractéristiques organoleptiques propres à chaque producteur. Les producteurs sont malheureusement parfois confrontés à la perte de leur ferment et doivent alors avoir recours à la solidarité d’autres producteurs pour réacquérir un ferment opérationnel. Ces pertes de ferments sont un frein au développement de la production de Gwell et donc à la valorisation de lait issu de vaches Bretonne Pie Noir. Cette race emblématique de la Bretagne, caractérisée par une rusticité hors du commun et un lait très riche en matière grasse totalisait au milieu du 19ème siècle près de 900 000 têtes. La modernisation des pratiques agricoles alliée à une orientation productiviste forte a conduit à une quasi extinction de l’espèce, ce qui a conduit à initier en 1976 un programme de sauvegarde de l’espèce. Le nombre de vaches s’élève ainsi aujourd’hui à près de 2500 femelles. La transformation du lait en Gwell est, pour les éleveurs, un moyen de valoriser la qualité du lait de Bretonne Pie Noir en conservant sa valeur ajoutée. Les éleveurs qui transforment le lait en Gwell œuvrent ainsi à la sauvegarde de l’espèce Bretonne Pie Noir, mais aussi à la préservation de la diversité microbienne, du patrimoine et des savoir-faire paysans associés. La caractérisation de l’écosystème microbien du ferment Gwell, pour mieux maitriser sa conservation et sécuriser ainsi la production de Gwell, participe de ce fait au maintien de la race Bretonne Pie Noir. Dans ce contexte notre étude visait à caractériser l’écosystème microbien du Gwell pour sécuriser les souches à l’origine de la typicité du produit. Nous avons ainsi montré que toutes les productions de Gwell avaient une flore bactérienne dominante similaire, composée de deux sous-espèces de la bactérie lactique Lactococcus lactis (subsp. lactis et subsp. cremoris). En fonction des producteurs, le nombre de souches de chaque sous-espèce peut varier avec dans certain cas la présence de Streptococcus thermophilus. De plus, nous avons identifié et caractérisé des souches spécifiques à chaque producteur et montré une forte résilience de l’écosystème pouvant expliquer en partie les différences organoleptiques observées entre les Gwell de différents producteurs
Mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations
Corpus callosum malformations are associated with a broad range of neurodevelopmental diseases. We report that de novo mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCC-CH-CM) in the absence of megalencephaly. We show that MAST1 is a microtubule-associated protein that is predominantly expressed in post-mitotic neurons and is present in both dendritic and axonal compartments. We further show that Mast1 null animals are phenotypically normal, whereas the deletion of a single amino acid (L278del) recapitulates the distinct neurological phenotype observed in patients. In animals harboring Mast1 microdeletions, we find that the PI3K/AKT3/mTOR pathway is unperturbed, whereas Mast2 and Mast3 levels are diminished, indicative of a dominant-negative mode of action. Finally, we report that de novo MAST1 substitutions are present in patients with autism and microcephaly, raising the prospect that mutations in this gene give rise to a spectrum of neurodevelopmental diseases
Consumer Regulation Strategies: Attenuating the Effect of Consumer References in a Voting Context
BRAT1–related disorders: phenotypic spectrum and phenotype-genotype correlations from 97 patients
BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large cohort of 97 individuals and draw phenotype-genotype correlations. Fifty-nine individuals presented with BRAT1-related RMFSL phenotype. Most of them had no psychomotor acquisition (100%), epilepsy (100%), microcephaly (91%), limb rigidity (93%), and died prematurely (93%). Thirty-eight individuals presented a non-lethal phenotype of BRAT1-related NEDCAS phenotype. Seventy-six percent of the patients in this group were able to walk and 68% were able to say at least a few words. Most of them had cerebellar ataxia (82%), axial hypotonia (79%) and cerebellar atrophy (100%). Genotype-phenotype correlations in our cohort revealed that biallelic nonsense, frameshift or inframe deletion/insertion variants result in the severe BRAT1-related RMFSL phenotype (46/46; 100%). In contrast, genotypes with at least one missense were more likely associated with NEDCAS (28/34; 82%). The phenotype of patients carrying splice variants was variable: 41% presented with RMFSL (7/17) and 59% with NEDCAS (10/17)
Stretch-activated ion channel TMEM63B associates with developmental and epileptic encephalopathies and progressive neurodegeneration
By converting physical forces into electrical signals or triggering intracellular cascades, stretch-activated ion channels allow the cell to respond to osmotic and mechanical stress. Knowledge of the pathophysiological mechanisms underlying associations of stretch-activated ion channels with human disease is limited. Here, we describe 17 unrelated individuals with severe early-onset developmental and epileptic encephalopathy (DEE), intellectual disability, and severe motor and cortical visual impairment associated with progressive neurodegenerative brain changes carrying ten distinct heterozygous variants of TMEM63B, encoding for a highly conserved stretch-activated ion channel. The variants occurred de novo in 16/17 individuals for whom parental DNA was available and either missense, including the recurrent p.Val44Met in 7/17 individuals, or in-frame, all affecting conserved residues located in transmembrane regions of the protein. In 12 individuals, hematological abnormalities co-occurred, such as macrocytosis and hemolysis, requiring blood transfusions in some. We modeled six variants (p.Val44Met, p.Arg433His, p.Thr481Asn, p.Gly580Ser, p.Arg660Thr, and p.Phe697Leu), each affecting a distinct transmembrane domain of the channel, in transfected Neuro2a cells and demonstrated inward leak cation currents across the mutated channel even in isotonic conditions, while the response to hypo-osmotic challenge was impaired, as were the Ca2+ transients generated under hypo-osmotic stimulation. Ectopic expression of the p.Val44Met and p.Gly580Cys variants in Drosophila resulted in early death. TMEM63B-associated DEE represents a recognizable clinicopathological entity in which altered cation conductivity results in a severe neurological phenotype with progressive brain damage and early-onset epilepsy associated with hematological abnormalities in most individuals. Genetics of disease, diagnosis and treatmen
- …
