50 research outputs found
Rapidly Solidified Sm–Co–V Nanocomposite Permanent Magnets
Alloys around the Sm–Co eutectic composition provide an opportunity to form two-phase nanocomposite permanent magnets consisting of nanoscale Co fibers embedded in Sm2Co17.While ternary alloying elements may refine the scale of the structure, they may also disrupt the eutectic growth and lead to the formation of primary Co. Thus, microstructural selection maps were constructed for conventionally solidified Sm–Co–V alloys. It was found that V additions enlarged the primary Sm2Co17-forming region and, at (Sm0.09Co0.91)97 V3, resulted in a eutectic structure. Upon rapid solidification, this alloy was determined to have a coercivity of 5 kOe with a high remanent ratio. However, the V addition reduced the magnetization, which limited the energy product to 4.3 MG Oe. The rapidly solidified structure consisted of primary SmCo7 dendrites along with an intergranular Co region, suggesting that eutectic structure formation is skewed by underlying metastable phase relationships
Rapidly Solidified Sm–Co–V Nanocomposite Permanent Magnets
Alloys around the Sm–Co eutectic composition provide an opportunity to form two-phase nanocomposite permanent magnets consisting of nanoscale Co fibers embedded in Sm2Co17.While ternary alloying elements may refine the scale of the structure, they may also disrupt the eutectic growth and lead to the formation of primary Co. Thus, microstructural selection maps were constructed for conventionally solidified Sm–Co–V alloys. It was found that V additions enlarged the primary Sm2Co17-forming region and, at (Sm0.09Co0.91)97 V3, resulted in a eutectic structure. Upon rapid solidification, this alloy was determined to have a coercivity of 5 kOe with a high remanent ratio. However, the V addition reduced the magnetization, which limited the energy product to 4.3 MG Oe. The rapidly solidified structure consisted of primary SmCo7 dendrites along with an intergranular Co region, suggesting that eutectic structure formation is skewed by underlying metastable phase relationships
The Flavonoid Metabolite 2,4,6-Trihydroxybenzoic Acid Is a CDK Inhibitor and an Anti-Proliferative Agent: A Potential Role in Cancer Prevention
Flavonoids have emerged as promising compounds capable of preventing colorectal cancer (CRC) due to their anti-oxidant and anti-inflammatory properties. It is hypothesized that the metabolites of flavonoids are primarily responsible for the observed anti-cancer effects owing to the unstable nature of the parent compounds and their degradation by colonic microflora. In this study, we investigated the ability of one metabolite, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) to inhibit Cyclin Dependent Kinase (CDK) activity and cancer cell proliferation. Using in vitro kinase assays, we demonstrated that 2,4,6-THBA dose-dependently inhibited CDKs 1, 2 and 4 and in silico studies identified key amino acids involved in these interactions. Interestingly, no significant CDK inhibition was observed with the structurally related compounds 3,4,5-trihydroxybenzoic acid (3,4,5-THBA) and phloroglucinol, suggesting that orientation of the functional groups and specific amino acid interactions may play a role in inhibition. We showed that cellular uptake of 2,4,6-THBA required the expression of functional SLC5A8, a monocarboxylic acid transporter. Consistent with this, in cells expressing functional SLC5A8, 2,4,6-THBA induced CDK inhibitory proteins p21Cip1 and p27Kip1 and inhibited cell proliferation. These findings, for the first time, suggest that the flavonoid metabolite 2,4,6-THBA may mediate its effects through a CDK- and SLC5A8-dependent pathway contributing to the prevention of CRC
Enhancement strategies for transdermal drug delivery systems: current trends and applications
Transdermal drug delivery systems have become an intriguing research topic in pharmaceutical technology area and one of the most frequently developed pharmaceutical products in global market. The use of these systems can overcome associated drawbacks of other delivery routes, such as oral and parenteral. The authors will review current trends, and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of transdermal drug delivery systems and enhancement strategies. This article will initially discuss each transdermal enhancement method used in the development of first-generation transdermal products. These methods include drug/vehicle interactions, vesicles and particles, stratum corneum modification, energy-driven methods and stratum corneum bypassing techniques. Through suitable design and implementation of active stratum corneum bypassing methods, notably microneedle technology, transdermal delivery systems have been shown to deliver both low and high molecular weight drugs. Microneedle technology platforms have proven themselves to be more versatile than other transdermal systems with opportunities for intradermal delivery of drugs/biotherapeutics and therapeutic drug monitoring. These have shown that microneedles have been a prospective strategy for improving transdermal delivery systems. Graphical abstract: [Figure not available: see fulltext.]</p
