183 research outputs found

    Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics

    Get PDF
    © 2020 Newlands Press. During a disease outbreak/pandemic situation such as COVID-19, researchers are in a prime position to identify and develop peptide-based therapies, which could be more rapidly and cost-effectively advanced into a clinical setting. One drawback of natural peptide drugs, however, is their proteolytic instability; peptidomimetics can help to overcome this caveat. In this review, we summarize peptide and peptide-based therapeutics that target one main entry pathway of SARS-CoV-2, which involves the host ACE2 receptor and viral spike (S) protein interaction. Furthermore, we discuss the advantages of peptidomimetics and other potential targets that have been studied using peptide-based therapeutics for COVID-19

    Second Language Processing Shows Increased Native-Like Neural Responses after Months of No Exposure

    Get PDF
    Although learning a second language (L2) as an adult is notoriously difficult, research has shown that adults can indeed attain native language-like brain processing and high proficiency levels. However, it is important to then retain what has been attained, even in the absence of continued exposure to the L2—particularly since periods of minimal or no L2 exposure are common. This event-related potential (ERP) study of an artificial language tested performance and neural processing following a substantial period of no exposure. Adults learned to speak and comprehend the artificial language to high proficiency with either explicit, classroom-like, or implicit, immersion-like training, and then underwent several months of no exposure to the language. Surprisingly, proficiency did not decrease during this delay. Instead, it remained unchanged, and there was an increase in native-like neural processing of syntax, as evidenced by several ERP changes—including earlier, more reliable, and more left-lateralized anterior negativities, and more robust P600s, in response to word-order violations. Moreover, both the explicitly and implicitly trained groups showed increased native-like ERP patterns over the delay, indicating that such changes can hold independently of L2 training type. The results demonstrate that substantial periods with no L2 exposure are not necessarily detrimental. Rather, benefits may ensue from such periods of time even when there is no L2 exposure. Interestingly, both before and after the delay the implicitly trained group showed more native-like processing than the explicitly trained group, indicating that type of training also affects the attainment of native-like processing in the brain. Overall, the findings may be largely explained by a combination of forgetting and consolidation in declarative and procedural memory, on which L2 grammar learning appears to depend. The study has a range of implications, and suggests a research program with potentially important consequences for second language acquisition and related fields

    Rediscovering MIF: New Tricks for an Old Cytokine

    No full text
    © 2019 Elsevier Ltd Produced by many cell types, macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with critical and supporting roles in many disease states and conditions. Its disease associations, myriad functions, receptors, and downstream signaling have been the subject of considerable research, yet many questions remain. Moreover, the relevance of MIF\u27s partially functionally redundant family member, D-dopachrome tautomerase (D-DT), also remains to be further characterized. Here, we discuss recent discoveries demonstrating direct roles of MIF in supporting NLR Family Pyrin Domain-Containing 3 (NRLP3) inflammasome activation, as well as acting as a molecular chaperone for intracellular proteins. These findings may offer new clues to understanding MIF\u27s multiple functions, and assist the development of putative MIF-targeting therapeutics for a variety of pathologies
    corecore